skip to main content


This content will become publicly available on July 1, 2024

Title: A new North American calibration for predicting canopy structure in deep time using epidermal phytolith morphology
Degree of canopy cover is linked to transpiration, carbon cycling and primary productivity of an ecosystem. In modern ecology, canopy structure is often quantified as Leaf Area Index (LAI), which is the amount of overstory leaf coverage relative to ground area. Although a key aspect of vegetation, the degree of canopy cover has proven difficult to reconstruct in deep time. One method, Reconstructed Leaf Area Index (rLAI), was developed to infer canopy structure using the relationship between non-grass leaf epidermal phytolith (plant biosilica) morphology, and leaf coverage in modern forests. This method leverages the observed correlation between epidermal phytolith size, shape (margin undulation), and light availability. When more light is available in a canopy, epidermal phytoliths tend to be smaller and less undulate, whereas less light availability is linked to larger and more undulate epidermal phytoliths. However, the calibration set used to develop this method was compiled from field sites and samples from localities in Costa Rica and it remains unclear how applicable it is to temperate North American fossil sites due to lack of data from relevant vegetation types and taxonomic differences between plant communities in the Neotropics vs. mid-latitude North America. For example, preliminary results measuring rLAI in phytolith assemblages from the Miocene of the North American Great Plains have yielded surprisingly high degrees of canopy density despite containing high relative abundances of open-habitat grasses. To test whether vegetational and taxonomic differences impact the calibration set, we constructed a new North American calibration using 24 quadrats from six sites, representing reasonable modern analogs for Miocene vegetation in eastern North America. Specifically, we sampled in Bennett Springs State Park in Lebanon, MO; Mark Twain National Forest in Rolla, MO; Tellico in Franklin, NC and Congaree National Park in Hopkins, SC. All sites include a range of canopy covers and vegetation types, from oak savannas and oak woodlands to mixed hardwood forests, pine savannas, and old growth bottomland forests. From each quadrat, we collected a soil sample and took hemispherical photos of the local canopy. From modern soil samples, biosilica was extracted in the lab, yielding phytolith assemblages which were scanned for epidermal phytoliths using a compound microscope. Recovered epidermal phytoliths size and margin undulation were measured and assemblage averages were used to predict measured LAI at each quadrat. Hemispherical photographs were processed using the software Gap Light Analyzer to obtain LAI values. We hypothesize there will be a linear relationship between actual LAI and LAI calculated from epidermal phytolith morphology, but its relationship will differ from that found in South America. Results will be used to reevaluate canopy coverage in sites within the Great Plains Miocene as well as applied to Pacific Northwest Miocene sites, both to understand changes to vegetation during global climatic events in their respective regions.  more » « less
Award ID(s):
1924390
NSF-PAR ID:
10463444
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Botany
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. Canopy radiative transfer is the primary mechanism by which models relate vegetation composition and state to the surface energy balance, which is important to light- and temperature-sensitive plant processes as well as understanding land–atmosphere feedbacks.In addition, certain parameters (e.g., specific leaf area, SLA) that have an outsized influence on vegetation model behavior can be constrained by observations of shortwave reflectance, thus reducing model predictive uncertainty.Importantly, calibrating against radiative transfer outputs allows models to directly use remote sensing reflectance products without relying on highly derived products (such as MODIS leaf area index) whose assumptions may be incompatible with the target vegetation model and whose uncertainties are usually not well quantified.Here, we created the EDR model by coupling the two-stream representation of canopy radiative transfer in the Ecosystem Demography model version 2 (ED2) with a leaf radiative transfer model (PROSPECT-5) and a simple soil reflectance model to predict full-range, high-spectral-resolution surface reflectance that is dependent on the underlying ED2 model state.We then calibrated this model against estimates of hemispherical reflectance (corrected for directional effects) from the NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and survey data from 54 temperate forest plots in the northeastern United States.The calibration significantly reduced uncertainty in model parameters related to leaf biochemistry and morphology and canopy structure for five plant functional types.Using a single common set of parameters across all sites, the calibrated model was able to accurately reproduce surface reflectance for sites with highly varied forest composition and structure.However, the calibrated model's predictions of leaf area index (LAI) were less robust, capturing only 46 % of the variability in the observations.Comparing the ED2 radiative transfer model with another two-stream soil–leaf–canopy radiative transfer model commonly used in remote sensing studies (PRO4SAIL) illustrated structural errors in the ED2 representation of direct radiation backscatter that resulted in systematic underestimation of reflectance.In addition, we also highlight that, to directly compare with a two-stream radiative transfer model like EDR, we had to perform an additional processing step to convert the directional reflectance estimates of AVIRIS to hemispherical reflectance (also known as “albedo”).In future work, we recommend that vegetation models add the capability to predict directional reflectance, to allow them to more directly assimilate a wide range of airborne and satellite reflectance products.We ultimately conclude that despite these challenges, using dynamic vegetation models to predict surface reflectance is a promising avenue for model calibration and validation using remote sensing data. 
    more » « less
  2. INTRODUCTION Inherent in traditional views of ape origins is the idea that, like living apes, early large-bodied apes lived in tropical forests. In response to constraints related to locomoting in forest canopies, it has been proposed that early apes evolved their quintessential upright torsos and acrobatic climbing and suspensory abilities, enhancing their locomotor versatility, to distribute their weight among small supports and thus reach ripe fruit in the terminal branches. This feeding and locomotor transition from a quadruped with a horizontal torso is thought to have occurred in the Middle Miocene due to an increasingly seasonal climate and feeding competition from evolving monkeys. Although ecological and behavioral comparisons among living apes and monkeys provide evidence for versions of terminal branch forest frugivory hypotheses, corroboration from the early ape fossil record has been lacking, as have detailed reconstructions of the habitats where the first apes evolved. RATIONALE The Early Miocene fossil site of Moroto II in Uganda provides a unique opportunity to test the predictions of terminal branch forest frugivory hypotheses. Moroto II documents the oldest [21 million years ago (Ma)] well-established paleontological record of ape teeth and postcranial bones from a single locality and preserves paleoecological proxies to reconstruct the environment. The following lines of evidence from Moroto II were analyzed: (i) the functional anatomy of femora and a vertebra attributed to the ape Morotopithecus ; (ii) dental traits, including molar shape and isotopic profiles of Morotopithecus enamel; (iii) isotopic dietary paleoecology of associated fossil mammals; (iv) biogeochemical signals from paleosols (ancient soils) that reflect local relative proportions of C 3 (trees and shrubs) and C 4 (tropical grasses and sedges that can endure water stress) vegetation as well as rainfall; and (v) assemblages of phytoliths, microscopic plant-derived silica bodies that reflect past plant communities. RESULTS A short, strong femur biomechanically favorable to vertical climbing and a vertebra indicating a dorsostable lower back confirm that ape fossils from Moroto II shared locomotor traits with living apes. Both Morotopithecus and a smaller ape from the site have elongated molars with well-developed crests for shearing leaves. Carbon isotopic signatures of the enamel of these apes and of other fossil mammals indicate that some mammals consistently fed on water-stressed C 3  plants, and possibly also C 4  vegetation, in a woodland setting. Carbon isotope values of pedogenic carbonates, paleosol organic matter, and plant waxes all point to substantial C 4 grass biomass on the landscape. Analysis of paleosols also indicates subhumid, strongly seasonal rainfall, and phytolith assemblages include forms from both arid-adapted C 4 grasses and forest-indicator plants. CONCLUSION The ancient co-occurrence of dental specializations for leaf eating, rather than ripe fruit consumption, along with ape-like locomotor abilities counters the predictions of the terminal branch forest frugivory hypotheses. The combined paleoecological evidence situates Morotopithecus in a woodland with a broken canopy and substantial grass understory including C 4 species. These findings call for a new paradigm for the evolutionary origins of early apes. We propose that seasonal, wooded environments may have exerted previously unrecognized selective pressures in the evolution of arboreal apes. For example, some apes may have needed to access leaves in the higher canopy in times of low fruit availability and to be adept at ascending and descending from trees that lacked a continuous canopy. Hominoid habitat comparisons. Shown are reconstructions of a traditionally conceived hominoid habitat ( A ) and the 21 Ma Moroto II, Uganda, habitat ( B ). 
    more » « less
  3. Abstract Aim

    Canopy structural complexity, which describes the degree of heterogeneity in vegetation density, is strongly tied to a number of ecosystem functions, but the community and structural characteristics that give rise to variation in complexity at site to subcontinental scales are poorly defined. We investigated how woody plant taxonomic and phylogenetic diversity, maximum canopy height, and leaf area index (LAI) relate to canopy rugosity, a measure of canopy structural complexity that is correlated with primary production, light capture, and resource‐use efficiency.

    Location

    Our analysis used 122 plots distributed across 10 ecologically and climatically variable forests spanning a > 1,500 km latitudinal gradient within the National Ecological Observatory Network (NEON) of the USA.

    Time period

    2016–2018.

    Taxa studied

    Woody plants.

    Methods

    We used univariate and multivariate modelling to examine relationships between canopy rugosity, and community and structural characteristics hypothesized to drive site and subcontinental variation in complexity.

    Results

    Spatial variation in canopy rugosity within sites and across the subcontinent was strongly and positively related to maximum canopy height (r2 = .87 subcontinent‐wide), with the addition of species richness in a multivariate model resolving another 2% of the variation across the subcontinent. Individually, woody plant species richness and phylogenetic diversity (r2 = .17 to .44, respectively) and LAI (r2 = .16) were weakly to moderately correlated with canopy rugosity at the subcontinental scale, and inconsistently explained spatial variation in canopy rugosity within sites.

    Main conclusions

    We conclude that maximum canopy height is a substantially stronger predictor of complexity than diversity or LAI within and across forests of eastern North America, suggesting that canopy volume places a primary constraint on the development of structural complexity. Management and land‐use practices that encourage and sustain tall temperate forest canopies may support greater complexity and associated increases in ecosystem functioning.

     
    more » « less
  4. Abstract

    C4 grassland ecosystems expanded across North America between ca. 8 and 3 Ma. Studies of ungulate enamel and environmental indicators from the middle Miocene Barstow Formation of southern California (USA) have demonstrated the presence of C4 vegetation prior to the late Miocene expansion of C4 grasslands. Fire promotes the growth of modern C4 grasslands and may have contributed to the Miocene expansion of C4 vegetation. We analyzed the concentration and accumulation rate (CHAR) of microscopic charred particles from sediment samples spanning the Barstow Formation in order to investigate the relationship between fire activity, canopy cover, and the presence of C4 vegetation. Concentration and CHAR were low throughout the formation then increased dramatically at 13.5 Ma. Enriched values of δ13C from soil organic matter and phytolith counts indicate the presence of C4 grasses and seasonally dry, open-canopy habitats at this time. The spike in concentration coincides with climatic cooling and drying in southern California after the Miocene Climatic Optimum. Increased fire activity may have contributed to habitat opening from forest to woodland and promoted the spread of C4 plants. This is the first charcoal record of fire activity from the middle Miocene of southwestern North America.

     
    more » « less
  5. Abstract

    Phytoliths preserved in soils and sediments can be used to provide unique insights into past vegetation dynamics in response to human and climate change. Phytoliths can reconstruct local vegetation in terrestrial soils where pollen grains typically decay, providing a range of markers (or lack thereof) that document past human activities. The ca. 6 million km2of Amazonian forests have relatively few baseline datasets documenting changes in phytolith representation across gradients of human disturbances. Here we show that phytolith assemblages vary on local scales across a gradient of (modern) human disturbance in tropical rainforests of Suriname. Detrended correspondence analysis showed that the phytolith assemblages found in managed landscapes (shifting cultivation and a garden), unmanaged forests, and abandoned reforesting sites were clearly distinguishable from intact forests and from each other. Our results highlight the sensitivity and potential of phytoliths to be used in reconstructing successional trajectories after site usage and abandonment. Percentages of specific phytolith morphotypes were also positively correlated with local palm abundances derived from UAV data, and with biomass estimated from MODIS satellite imagery. This baseline dataset provides an index of likely changes that can be observed at other sites that indicate past human activities and long-term forest recovery in Amazonia.

     
    more » « less