Abstract Plastic litter is accumulating in ecosystems worldwide. Rivers are a major source of plastic litter to oceans. However, rivers also retain and transform plastic pollution. While methods for calculating particle transport dynamics in rivers are well established, they are infrequently used to quantify the transport and retention of microplastics (i.e., particles < 5 mm) in flowing waters. Measurements of microplastic movement in rivers are needed for a greater understanding of the fate of plastic litter at watershed and global scales, and to inform pollution prevention strategies. Our objectives were to (1) quantify the abundance of microplastics within different river habitats and (2) adapt organic matter “spiraling” metrics to measure microplastic transport concurrent with fine particulate organic matter (FPOM). We quantified microplastic and FPOM abundance across urban river habitats (i.e., surface water, water column, benthos), and calculated downstream particle velocity, index of retention, turnover rate, and spiraling length for both particle types. Microplastic standing stock was assessed using a habitat‐specific approach, and estimates were scaled up to encompass the study reach. Spatial distribution of particles demonstrated that microplastics and FPOM were retained together, likely by hydrodynamic forces that facilitate particle sinking or resuspension. Microplastic particles had a higher downstream particle velocity and lower index of retention relative to FPOM, suggesting that microplastics were retained to a lesser degree than FPOM in the study reaches. Microplastics also showed lower turnover rates and longer spiraling lengths relative to FPOM, attributed to the slow rates of plastic degradation. Thus, rivers are less retentive of microplastics than FPOM, although both particles are retained in similar locations. Because microplastics are resistant to degradation, individual particles can be transported longer distances prior to mineralization than FPOM, making it likely that microplastic particles will encounter larger bodies of water and interact with various aquatic biota in the process. These empirical assessments of particle transport will be valuable for understanding the fate and transformation of microplastic particles in freshwater resources and ultimately contribute to the refinement of global plastic budgets.
more »
« less
The “plastic cycle”: a watershed‐scale model of plastic pools and fluxes
Research on plastics in global ecosystems is rapidly evolving. Oceans have been the primary focus of studies to date, whereas rivers are generally considered little more than conduits of plastics to marine ecosystems. Within a watershed, however, plastics of all sizes are retained, transformed, and even extracted via freshwater use or litter cleanup. As such, plastic litter in terrestrial and freshwater ecosystems is an important but underappreciated component of global plastic pollution. To gain a holistic perspective, we developed a conceptual model that synthesizes all sources, fluxes, and fates for plastics in a watershed, including containment (ie disposed in landfill), non‐containment (ie persists as environmental pollution), mineralization, export to oceans, atmospheric interactions, and freshwater extraction. We used this model of the “plastic cycle” to illustrate which components have received the most scientific attention and to reveal overlooked pathways. Our main objective is for this framework to inform future research, offer a new perspective to adapt management across diverse waste governance scenarios, and improve global models of plastic litter.
more »
« less
- Award ID(s):
- 1552825
- PAR ID:
- 10463491
- Date Published:
- Journal Name:
- Frontiers in Ecology and the Environment
- Volume:
- 19
- Issue:
- 3
- ISSN:
- 1540-9295
- Page Range / eLocation ID:
- 176 to 183
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This Assessment Update by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) considers the interactive effects of solar UV radiation, global warming, and other weathering factors on plastics. The Assessment illustrates the significance of solar UV radiation in decreasing the durability of plastic materials, degradation of plastic debris, formation of micro- and nanoplastic particles and accompanying leaching of potential toxic compounds. Micro- and nanoplastics have been found in all ecosystems, the atmosphere, and in humans. While the potential biological risks are not yet well-established, the widespread and increasing occurrence of plastic pollution is reason for continuing research and monitoring. Plastic debris persists after its intended life in soils, water bodies and the atmosphere as well as in living organisms. To counteract accumulation of plastics in the environment, the lifetime of novel plastics or plastic alternatives should better match the functional life of products, with eventual breakdown releasing harmless substances to the environment.more » « less
-
Plastic pollution is one of the most pressing environmental and social issues of the 21st century. Recent work has highlighted the atmosphere’s role in transporting microplastics to remote locations [S. Allen et al.,Nat. Geosci.12, 339 (2019) and J. Brahney, M. Hallerud, E. Heim, M. Hahnenberger, S. Sukumaran,Science368, 1257–1260 (2020)]. Here, we use in situ observations of microplastic deposition combined with an atmospheric transport model and optimal estimation techniques to test hypotheses of the most likely sources of atmospheric plastic. Results suggest that atmospheric microplastics in the western United States are primarily derived from secondary re-emission sources including roads (84%), the ocean (11%), and agricultural soil dust (5%). Using our best estimate of plastic sources and modeled transport pathways, most continents were net importers of plastics from the marine environment, underscoring the cumulative role of legacy pollution in the atmospheric burden of plastic. This effort uses high-resolution spatial and temporal deposition data along with several hypothesized emission sources to constrain atmospheric plastic. Akin to global biogeochemical cycles, plastics now spiral around the globe with distinct atmospheric, oceanic, cryospheric, and terrestrial residence times. Though advancements have been made in the manufacture of biodegradable polymers, our data suggest that extant nonbiodegradable polymers will continue to cycle through the earth’s systems. Due to limited observations and understanding of the source processes, there remain large uncertainties in the transport, deposition, and source attribution of microplastics. Thus, we prioritize future research directions for understanding the plastic cycle.more » « less
-
Monitoring plastic litter in the environment is critical to understanding the amount, sources, transport, fate, and environmental impact of this pollutant. However, few studies have monitored plastic litter on lakebeds which are potentially important environments for determining the fate and transport of plastic litter in freshwater basins. In this study, a self-contained underwater breathing apparatus was used for litter collection at the lakebed along five transects in Lake Tahoe, United States. Litter was brought to the surface and characterized by litter type. Plastic litter was subsampled, and polymer composition was determined using attenuated total reflection Fourier transform infrared spectroscopy. The average plastic litter from the lakebed for the five dive transects was 83 ± 49 items per kilometer. The top plastic litter categories were other plastic litter (plastic litter that did not fall in another category), followed by food containers, bottles <2 L, plastic bags, and toys. These results are in line with prior studies on submerged litter, and intervention approaches or ongoing education are needed. The six polymers most frequently detected in the subsamples were polyvinyl chloride, polystyrene/expanded polystyrene, polyethylene terephthalate/polyester, polyethylene, polypropylene, and polyamide. These observations reflect global plastic production and microplastic studies from lake surface water and sediments. We found that some litter subcategories were primarily comprised of a single polymer type, therefore, in studies where the polymer type cannot be measured but litter is categorized, these results could provide an estimate of the total polymer composition for select litter categories.more » « less
-
Limited work to date has examined plastic ingestion in highly migratory seabirds like Great Shearwaters ( Ardenna gravis ) across their entire migratory range. We examined 217 Great Shearwaters obtained from 2008–2019 at multiple locations spanning their yearly migration cycle across the Northwest and South Atlantic to assess accumulation of ingested plastic as well as trends over time and between locations. A total of 2328 plastic fragments were documented in the ventriculus portion of the gastrointestinal tract, with an average of 9 plastic fragments per bird. The mass, count, and frequency of plastic occurrence (FO) varied by location, with higher plastic burdens but lower FO in South Atlantic adults and chicks from the breeding colonies. No fragments of the same size or morphology were found in the primary forage fish prey, the Sand Lance ( Ammodytes spp., n = 202) that supports Great Shearwaters in Massachusetts Bay, United States, suggesting the birds directly ingest the bulk of their plastic loads rather than accumulating via trophic transfer. Fourier-transform infrared spectroscopy indicated that low- and high-density polyethylene were the most common polymers ingested, within all years and locations. Individuals from the South Atlantic contained a higher proportion of larger plastic items and fragments compared to analogous life stages in the NW Atlantic, possibly due to increased use of remote, pelagic areas subject to reduced inputs of smaller, more diverse, and potentially less buoyant plastics found adjacent to coastal margins. Different signatures of polymer type, size, and category between similar life stages at different locations suggests rapid turnover of ingested plastics commensurate with migratory stage and location, though more empirical evidence is needed to ground-truth this hypothesis. This work is the first to comprehensively measure the accumulation of ingested plastics by Great Shearwaters over the last decade and across multiple locations spanning their yearly trans-equatorial migration cycle and underscores their utility as sentinels of plastic pollution in Atlantic ecosystems.more » « less
An official website of the United States government

