Abstract We present a detailed study of the magnetic field structure in the G111 molecular cloud, a ring-like filamentary cloud within the NGC 7538 region. Our analysis combines multiwavelength polarization data and molecular-line observations to investigate the magnetic field’s role in the cloud’s formation and evolution. We utilized interstellar dust polarization from the Planck telescope to trace large-scale field orientations, starlight extinction polarization from the Kanata telescope to probe the cloud’s magnetic field after foreground subtraction, and velocity gradients derived from CO isotopologues observed with the IRAM 30 m telescope to examine dense regions. Our results reveal a coherent yet spatially varying magnetic field within G111. The alignment between Planck-derived orientations and starlight extinction polarization highlights significant foreground dust contamination, which we correct through careful subtraction. The global alignment of the magnetic field with density structures suggests that the field is dynamically important in shaping the cloud. Variations in CO-derived orientations further suggest that local dynamical effects, such as gravitational interactions and turbulence, influence the cloud’s structure. The curved magnetic field along the dense ridges, coinciding with mid-infrared emission in WISE data, indicates shock compression, likely driven by stellar feedback or supernova remnants. Our findings support a scenario where G111’s morphology results from turbulent shock-driven compression, rather than simple gravitational contraction. The interplay between magnetic fields and external forces is crucial in shaping molecular clouds and regulating star formation. Future high-resolution observations will be essential to further constrain the magnetic field’s role in cloud evolution.
more »
« less
Magnetic slowdown of topological edge states
Abstract We study the propagation of wavepackets along curved interfaces between topological, magnetic materials. Our Hamiltonian is a massive Dirac operator with a magnetic potential. We construct semiclassical wavepackets propagating along the curved interface as adiabatic modulations of straight edge states under constant magnetic fields. While in the magnetic‐free case, the wavepackets propagate coherently at speed one, here they experience slowdown, dispersion, and Aharonov–Bohm effects. Several numerical simulations illustrate our results.
more »
« less
- Award ID(s):
- 2054589
- PAR ID:
- 10463621
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Communications on Pure and Applied Mathematics
- Volume:
- 77
- Issue:
- 2
- ISSN:
- 0010-3640
- Format(s):
- Medium: X Size: p. 1235-1277
- Size(s):
- p. 1235-1277
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Fromme, Paul; Su, Zhongqing (Ed.)We investigate curved surfaces operating as geodesic lenses for elastic waves. Consistently with findings in optics, we show that wave propagation occurs along rays that correspond to the geodesics of the curved surfaces, and we establish the geometric equivalence between Gaussian curvature and refractive index. This equivalence is formulated for flexural waves in curved shells by showing that, in the short wavelength limit, the ray equation corresponds to the classical equation of geodesics. We leverage this result to identify a non-Euclidean transformation that maps the geometric profile of a isotropic curved waveguide into a spatially varying refractive index distribution for a planar waveguide. These theoretical predictions are validated first through numerical simulations, and subsequently through experiments on 3D printed curved membranes with different curvature distributions. Numerical and experimental findings confirm that focal regions and caustic networks are correctly predicted based on geodesic evaluations. Our results form the basis for the design of curved profiles that correspond to spatial distributions of the refractive index and induce focal points by forcing waves to propagate along predefined trajectories. The findings of this study also suggest curvature as an attractive alternative to strategies based on the local tailoring of material properties and geometrical patterns that have gained in popularity for gradient-index lens design.more » « less
-
Abstract Instabilities in a neutron star can generate Alfvén waves in its magnetosphere. Propagation along the curved magnetic field lines strongly shears the wave, boosting its electric current j A . We derive an analytic expression for the evolution of the wavevector k and the growth of j A . In the strongly sheared regime, j A may exceed the maximum current j 0 that can be supported by the background e ± plasma. We investigate these charge-starved waves, first using a simplified two-fluid analytic model, then with first-principles kinetic simulations. We find that the Alfvén wave is able to propagate successfully even when κ ≡ j A / j 0 ≫ 1. It sustains j A by compressing and advecting the plasma along the magnetic field lines with an increasing Lorentz factor, γ ≳ κ 1/2 . The simulations show how plasma instabilities lead to gradual dissipation of the wave energy. Our results suggest that an extremely high charge-starvation parameter κ ≳ 10 4 may be required in order for this mechanism to power the observed fast radio bursts (FRBs) from SGR 1935+2154. However, cosmological FRBs with much higher luminosities are unlikely to be a result of charge-starvation.more » « less
-
Abstract The transition from planar to three-dimensional (3D) magnetic nanostructures represents a significant advancement in both fundamental research and practical applications, offering vast potential for next-generation technologies like ultrahigh-density storage, memory, logic, and neuromorphic computing. Despite being a relatively new field, the emergence of 3D nanomagnetism presents numerous opportunities for innovation, prompting the creation of a comprehensive roadmap by leading international researchers. This roadmap aims to facilitate collaboration and interdisciplinary dialogue to address challenges in materials science, physics, engineering, and computing. The roadmap comprises eighteen sections, roughly divided into three blocks. The first block explores the fundamentals of 3D nanomagnetism, focusing on recent trends in fabrication techniques and imaging methods crucial for understanding complex spin textures, curved surfaces, and small-scale interactions. Techniques such as two-photon lithography and focused electron beam-induced deposition enable the creation of intricate 3D architectures, while advanced imaging methods like electron holography and synchrotron x-ray tomography provide nanoscale spatial resolution for studying magnetization dynamics in three dimensions. Various 3D magnetic systems, including coupled multilayer systems, artificial spin-ice, magneto-plasmonic systems, topological spin textures, and molecular magnets are discussed. The second block introduces analytical and numerical methods for investigating 3D nanomagnetic structures and curvilinear systems, highlighting geometrically curved architectures, interconnected nanowire systems, and other complex geometries. Finite element methods are emphasized for capturing complex geometries, along with direct frequency domain solutions for addressing magnonic problems. The final block focuses on 3D magnonic crystals and networks, exploring their fundamental properties and potential applications in magnonic circuits, memory, and spintronics. Computational approaches using 3D nanomagnetic systems and complex topological textures in 3D spintronics are highlighted for their potential to enable faster and more energy-efficient computing.more » « less
-
Abstract Metrology of electron wavepackets is often conducted with the technique of photoelectron interferometry. However, the ultrashort light pulses employed in this method place a limit on the energy resolution. Here, weadvance ultrafast photoelectron interferometry access both high temporal and spectral resolution. The key to our approach lies in stimulating Raman interferences with a probe pulse and while monitoring the modification of the autoionizing electron yield in a separate delayed detection step. As a proof of the principle, we demonstrated this technique to obtain the components of an autoionizing nf′ wavepacket between the spin-orbit split ionization thresholds in argon. We extracted the amplitudes and phases from the interferogram and compared the experimental results with second-order perturbation theory calculations. This high resolution probing and metrology of electron dynamics opens the path for study of molecular wavepackets.more » « less
An official website of the United States government
