skip to main content


Title: Mapping protein dynamics at high spatial resolution with temperature-jump X-ray crystallography
Abstract

Understanding and controlling protein motion at atomic resolution is a hallmark challenge for structural biologists and protein engineers because conformational dynamics are essential for complex functions such as enzyme catalysis and allosteric regulation. Time-resolved crystallography offers a window into protein motions, yet without a universal perturbation to initiate conformational changes the method has been limited in scope. Here we couple a solvent-based temperature jump with time-resolved crystallography to visualize structural motions in lysozyme, a dynamic enzyme. We observed widespread atomic vibrations on the nanosecond timescale, which evolve on the submillisecond timescale into localized structural fluctuations that are coupled to the active site. An orthogonal perturbation to the enzyme, inhibitor binding, altered these dynamics by blocking key motions that allow energy to dissipate from vibrations into functional movements linked to the catalytic cycle. Because temperature jump is a universal method for perturbing molecular motion, the method demonstrated here is broadly applicable for studying protein dynamics.

 
more » « less
NSF-PAR ID:
10463648
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; « less
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Chemistry
Volume:
15
Issue:
11
ISSN:
1755-4330
Format(s):
Medium: X Size: p. 1549-1558
Size(s):
["p. 1549-1558"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The catalytic activity of human glutathione S‐transferase A1‐1 (hGSTA1‐1), a homodimeric detoxification enzyme, is dependent on the conformational dynamics of a key C‐terminal helix α9 in each monomer. However, the structural details of how the two monomers interact upon binding of substrates is not well understood and the structure of the ligand‐free state of the hGSTA1‐1 homodimer has not been resolved. Here, we used a combination of electron paramagnetic resonance (EPR) distance measurements and weighted ensemble (WE) simulations to characterize the conformational ensemble of the ligand‐free state at the atomic level. EPR measurements reveal a broad distance distribution between a pair of Cu(II) labels in the ligand‐free state that gradually shifts and narrows as a function of increasing ligand concentration. These shifts suggest changes in the relative positioning of the two α9 helices upon ligand binding. WE simulations generated unbiased pathways for the seconds‐timescale transition between alternate states of the enzyme, leading to the generation of atomically detailed structures of the ligand‐free state. Notably, the simulations provide direct observations of negative cooperativity between the monomers of hGSTA1‐1, which involve the mutually exclusive docking of α9 in each monomer as a lid over the active site. We identify key interactions between residues that lead to this negative cooperativity. Negative cooperativity may be essential for interaction of hGSTA1‐1 with a wide variety of toxic substrates and their subsequent neutralization. More broadly, this work demonstrates the power of integrating EPR distances with WE rare‐events sampling strategy to gain mechanistic information on protein function at the atomic level.

     
    more » « less
  2. Abstract

    For decades, researchers have elucidated essential enzymatic functions on the atomic length scale by tracing atomic positions in real-time. Our work builds on possibilities unleashed by mix-and-inject serial crystallography (MISC) at X-ray free electron laser facilities. In this approach, enzymatic reactions are triggered by mixing substrate or ligand solutions with enzyme microcrystals. Here, we report in atomic detail (between 2.2 and 2.7 Å resolution) by room-temperature, time-resolved crystallography with millisecond time-resolution (with timepoints between 3 ms and 700 ms) how theMycobacterium tuberculosisenzyme BlaC is inhibited by sulbactam (SUB). Our results reveal ligand binding heterogeneity, ligand gating, cooperativity, induced fit, and conformational selection all from the same set of MISC data, detailing how SUB approaches the catalytic clefts and binds to the enzyme noncovalently before reacting to atrans-enamine. This was made possible in part by the application of singular value decomposition to the MISC data using a program that remains functional even if unit cell parameters change up to 3 Å during the reaction.

     
    more » « less
  3. Abstract

    The transcriptional activator CooA belongs to the CRP/FNR (cAMP receptor protein/fumarate and nitrate reductase) superfamily of transcriptional regulators and uses heme to sense carbon monoxide (CO). Effector‐driven allosteric activation is well understood in CRP, a CooA homologue. A structural allosteric activation model for CooA exists which parallels that of CRP; however, the role of protein dynamics, which is crucial in CRP, is not well understood in CooA. We employed site‐directed spin labeling electron paramagnetic resonance spectroscopy to probe CooA motions on the μs‐ms timescale. We created a series of Cys substitution variants, each with a cysteine residue introduced into a key functional region of the protein: K26C, E60C, F132C, D134C, and S175C. The heme environment and DNA binding affinity of each variant were comparable to those of wild‐type CooA, with the exception of F132C, which displayed reduced DNA binding affinity. This observation confirms a previously hypothesized role for Phe132in transmitting the allosteric CO binding signal. Osmolyte perturbation studies of Fe(III) “locked‐off” CooA variants labeled with either MTSL or MAL‐6 nitroxide spin labels revealed that multicomponent EPR spectra report on conformational flexibility on the μs‐ms timescale. Multiple dynamic populations exist at every site examined in the structurally uncharacterized Fe(III) “locked‐off” CooA. This observation suggests that, in direct contrast to effector‐free CRP, Fe(III) “locked‐off” CooA undergoes conformational exchange on the μs‐ms timescale. Importantly, we establish MAL‐6 as a spin label with a redox‐stable linkage that may be utilized to compare conformational dynamics between functional states of CooA.

     
    more » « less
  4. The study of phenomena such as protein folding and conformational changes in molecules is a central theme in chemical physics. Molecular dynamics (MD) simulation is the primary tool for the study of transition processes in biomolecules, but it is hampered by a huge timescale gap between the processes of interest and atomic vibrations that dictate the time step size. Therefore, it is imperative to combine MD simulations with other techniques in order to quantify the transition processes taking place on large timescales. In this work, the diffusion map with Mahalanobis kernel, a meshless approach for approximating the Backward Kolmogorov Operator (BKO) in collective variables, is upgraded to incorporate standard enhanced sampling techniques, such as metadynamics. The resulting algorithm, which we call the target measure Mahalanobis diffusion map (tm-mmap), is suitable for a moderate number of collective variables in which one can approximate the diffusion tensor and free energy. Imposing appropriate boundary conditions allows use of the approximated BKO to solve for the committor function and utilization of transition path theory to find the reactive current delineating the transition channels and the transition rate. The proposed algorithm, tm-mmap, is tested on the two-dimensional Moro–Cardin two-well system with position-dependent diffusion coefficient and on alanine dipeptide in two collective variables where the committor, the reactive current, and the transition rate are compared to those computed by the finite element method (FEM). Finally, tm-mmap is applied to alanine dipeptide in four collective variables where the use of finite elements is infeasible.

     
    more » « less
  5. Abstract

    Experimental observations of enzymes under active turnover conditions have brought new insight into the role of protein motions and allosteric networks in catalysis. Many of these studies characterize enzymes under dynamic chemical equilibrium conditions, in which the enzyme is actively catalyzing both the forward and reverse reactions during data acquisition. We have previously analyzed conformational dynamics and allosteric networks of the alpha subunit of tryptophan synthase under such conditions using NMR. We have proposed that thisworkingstate represents a four to one ratio of the enzyme bound with the indole‐3‐glycerol phosphate substrate (E:IGP) to the enzyme bound with the products indole and glyceraldehyde‐3‐phosphate (E:indole:G3P). Here, we analyze the inactive D60N variant to deconvolute the contributions of the substrate‐ and products‐bound states to theworkingstate. While the D60N substitution itself induces small structural and dynamic changes, the D60N E:IGP and E:indole:G3P states cannot entirely account for the conformational dynamics and allosteric networks present in theworkingstate. The act of chemical bond breakage and/or formation, or possibly the generation of an intermediate, may alter the structure and dynamics present in theworkingstate. As the enzyme transitions from the substrate‐bound to the products‐bound state, millisecond conformational exchange processes are quenched and new allosteric connections are made between the alpha active site and the surface which interfaces with the beta subunit. The structural ordering of the enzyme and these new allosteric connections may be important in coordinating the channeling of the indole product into the beta subunit.

     
    more » « less