skip to main content

Title: AdaCache: A Disaggregated Cache System with Adaptive Block Size for Cloud Block Storage
Award ID(s):
2231874 2126291 1955593
Author(s) / Creator(s):
Date Published:
Journal Name:
IEEE International Conference on Cloud Computing
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary We establish a general theory of optimality for block bootstrap distribution estimation for sample quantiles under mild strong mixing conditions. In contrast to existing results, we study the block bootstrap for varying numbers of blocks. This corresponds to a hybrid between the sub- sampling bootstrap and the moving block bootstrap, in which the number of blocks is between 1 and the ratio of sample size to block length. The hybrid block bootstrap is shown to give theoretical benefits, and startling improvements in accuracy in distribution estimation in important practical settings. The conclusion that bootstrap samples should be of smaller size than the original sample has significant implications for computational efficiency and scalability of bootstrap methodologies with dependent data. Our main theorem determines the optimal number of blocks and block length to achieve the best possible convergence rate for the block bootstrap distribution estimator for sample quantiles. We propose an intuitive method for empirical selection of the optimal number and length of blocks, and demonstrate its value in a nontrivial example. 
    more » « less
  2. Amphiphilic block copolymer micelles can mimic the ability of natural lung surfactant to reduce the air–water interfacial tension down close to zero and prevent the Laplace pressure-induced alveolar collapse. In this work, we investigated the air–water interfacial behaviors of polymer micelles derived from eight different poly(ethylene glycol)(PEG)-based block copolymers having different hydrophobic block chemistries to elucidate the effect of the core block chemistry on the surface mechanics of the block copolymer micelles. Aqueous micelles of about 30 nm in hydrodynamic diameter were prepared from the PEG-based block copolymers via equilibrium nanoprecipitation and spread on water surface using water as the spreading medium. Surface pressure–area isotherm and quantitative Brewster angle microscopy measurements were performed to investigate how the micelle/monolayer structures change during lateral compression of the monolayer; widely varying structural behaviors were observed, including wrinkling/collapse of micelle monolayers, and deformation and/or desorption of individual micelles. By bivariate correlation regression analysis of surface pressure-area isotherm data, it was found that the rigidity and hydrophobicity of the hydrophobic core domain, which are quantified by glass transition temperature (Tg) and water contact angle (θ) measurements, respectively, are coupled factors that need to be taken into account concurrently in order to control the surface mechanical properties of polymer micelle monolayers; micelles having rigid and strongly hydrophobic cores exhibited high surface pressure and high compressibility modulus under high compression. High surface pressure and high compressibility modulus were also found to be correlated with the formation of wrinkles in the micelle monolayer (visualized by Brewster angle microscopy). From this study, we conclude that polymer micelles based on hydrophobic block materials having higher Tg and θ are more suitable for surfactant replacement therapy applications which require the therapeutic surfactant to produce high surface pressure and modulus at the alveolar air–water interface. 
    more » « less
  3. Chain exchange behaviors in self-assembled block copolymer (BCP) nanoparticles (NPs) at room temperature are investigated through observations of structural differences between parent and binary systems of BCP NPs with and without crosslinked domains. Pairs of linear diblock or triblock, and branched star-like polystyrene-poly(2-vinylpyridine) (PS-PVP) copolymers that self-assemble in a PVP-selective mixed solvent into BCP NPs with definite differences in size and self-assembled morphology are combined by diverse mixing protocols and at different crosslinking densities to reveal the impact of chain exchange between BCP NPs. Clear structural evolution is observed by dynamic light scattering and AFM and TEM imaging, especially in a blend of triblock + star copolymer BCP NPs. The changes are ascribed to the chain motion inherent in the dynamic equilibrium, which drives the system to a new structure, even at room temperature. Chemical crosslinking of PVP corona blocks suppresses chain exchange between the BCP NPs and freezes the nanostructures at a copolymer crosslinking density (CLD) of ∼9%. This investigation of chain exchange behaviors in BCP NPs having architectural and compositional complexity and the ability to moderate chain motion through tailoring the CLD is expected to be valuable for understanding the dynamic nature of BCP self-assemblies and diversifying the self-assembled structures adopted by these systems. These efforts may guide the rational construction of novel polymer NPs for potential use, for example, as drug delivery platforms and nanoreactors. 
    more » « less