skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interrelationships between process parameters, cross‐sectional geometry, fracture behavior, and mechanical properties in material extrusion additive manufacturing
Abstract Additive manufacturing offers reduced lead time between design and manufacturing. Fused filament fabrication, the most common form of material extrusion additive manufacturing, enables the production of custom‐made parts with complex geometry. Despite the numerous advantages of additive manufacturing, reliability, reproducibility, and achievement of isotropic bulk properties in part remains challenging. We investigated the tensile behavior of a model polycarbonate system to explore what leads to different tensile properties, including sources of ductile versus brittle fracture. We utilized a one factor at a time (OFAT) design of experiments (DOE), printed single road‐width boxes, and performed tensile tests on specimens from these boxes. Additionally, we characterized the cross‐sections of parts printed under different conditions and their subsequent fracture behavior. The results demonstrate that isotropic bulk properties are achievable by printing at high speeds, and provide mechanisms to explain why. HighlightsPrinting at high speeds leads to improved mechanical properties.Printed samples undergo a mix of ductile and brittle failure.Jagged fracture path is associated with superior adhesion.High layer times lead to worse interfacial bonding.  more » « less
Award ID(s):
1914651
PAR ID:
10463824
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Polymer Engineering & Science
Volume:
63
Issue:
11
ISSN:
0032-3888
Format(s):
Medium: X Size: p. 3906-3918
Size(s):
p. 3906-3918
Sponsoring Org:
National Science Foundation
More Like this
  1. Material extrusion additive manufacturing of polycarbonate, including tensile properties, cross-sectional microscopy, and fracture surfaces for single road width boxes printed with different print speeds, layer times, and extrusion temperatures. 
    more » « less
  2. Abstract This study presents an experimental investigation to examine the mixed‐mode fracture behavior of fused filament fabrication printed acrylonitrile butadiene styrene (ABS). The single‐edge notch bending specimen configuration is employed to perform mixed‐mode fracture experiments. Four distinct printing orientations—90°, 0°, 45°/−45°, and 90°—are investigated. For each orientation, fracture studies are conducted under pure mode‐I loading (symmetric three‐point bending), mixed‐mode I/II, and pure mode‐II loading (asymmetric three‐point bending) to establish a mixed‐mode fracture criterion. The study evaluates the influence of printing orientation on fracture toughness, crack propagation behavior, and the mixed‐mode fracture criterion. Scanning electron microscopy (SEM) is utilized to analyze the fracture surfaces and correlate the observed fracture mechanisms with the measured fracture toughness values. The findings reveal that printing orientation significantly affects both the fracture toughness and the mixed‐mode fracture criterion. Among the orientations studied, the 90° specimens exhibit the highest fracture toughness and superior performance under all mixed‐mode conditions. SEM images of the fracture surfaces across different printing orientations show the formation of smooth shear zones of varying sizes near the crack tip under mixed‐mode and pure mode‐II conditions. These zones suggest an enhanced resistance to crack propagation, with the degree of improvement differing among the orientations. HighlightsMixed‐mode fracture behavior of 3D‐printed acrylonitrile butadiene styrene.Printing orientations have a major influence on mixed‐mode fracture criterion.90° printing orientation has the highest fracture toughness for mode‐mixities.0° printing orientation has the lowest fracture toughness for mode‐mixities.Fracture surface has dominant shear zone for all mode‐mixities except mode‐I. 
    more » « less
  3. Abstract Despite the growing interest in flexible electronics and wearable sensors, research in piezoresistive polymer nanocomposites has stagnated in consideration of the polymer matrices, particularly in additive manufacturing (AM) applications. This research focuses on using a low‐molecular isoprene rubber (IR) as a matrix filled with carbonaceous nanoparticles conductive carbon black (CCB) and carbon nanotubes (CNT) to create piezoresistive sensors printed via direct ink writing (DIW). Using IR as a matrix not only provides an avenue for an alternate sensor matrix, but also offers a distinct advantage for retrofit sensor applications to other diene rubber substrates due to both the feedstock and substrate possessing the same vulcanization mechanism. Thereby, the rheological, mechanical, and piezoresistive properties of the IR nanocomposites are fully investigated, with emphasis on non‐ambient conditions (temperature and durability). In this work it is shown that while CCB exhibits a lower gauge factor (between 1.5 and 8) across all strain rates, strain ranges, and temperatures when compared to CNT compounds (gauge factors between 1.5 and 260), CCB compounds possess better linearity, less temperature deviation, and overall better performance under cyclic loading conditions. This is followed by demonstrations for real‐world applications, including the direct‐to‐product printing of a CCB strain gauge on a chloroprene rubber substrate. HighlightsAM via DIW of piezoresistive isoprene sensors filled with conductive CB and multi‐wall carbon nanotubes.Printed samples capable of achieving tensile strength >3.5 MPa.CB sensors showed less sensitivity, but better durability and repeatability compared to carbon nanotube filled sensors.Piezoresistive isoprene strain gauge printed on chloroprene substrate with direct adhesion. 
    more » « less
  4. Refractory metals and their carbides possess extraordinary properties when subjected to high temperatures and extreme environments. Consequently, they can act as key material systems for advancing many sectors, including space, energy and defence. However, it has been difficult to process these materials using the conventional routes of manufacturing. Additive manufacturing (AM) has shown a lot of potential to overcome the challenges and develop new material systems with tailored properties. This review provides a fundamental understanding of the challenges in the processing of refractory metals and their carbides, including microcracking, formation of brittle oxide phases and high ductile to brittle transition temperature (DBTT). We also highlight some of the novel approaches that have been taken to improve the processability of these challenging material systems using AM. These include in-situ reactive printing, ultrasonic vibration, laser beam shaping, multi-laser deposition and substrate pre-heating with a focus on microstructural changes to improve the properties of printed parts. 
    more » « less
  5. Study examines binder deposition methods (bulk vs. selective printing) and sintering atmospheres (vacuum vs. H2) on binder jetted 316 L stainless steel components. The density of the H2-sintered specimens was found to be lower (up to 5%) compared to the vacuum-sintered parts with the final density of 99.7%. Grain size analysis indicated smaller grains in the H2-sintered parts (∼26 μm) compared to vacuum-sintered condition (∼33 μm) in the bound area which could be attributed to the presence of residual pores that impeded grain growth. The H2-sintered specimens exhibited an elongation of 25% and an ultimate tensile strength (UTS) of 460 MPa, whereas the vacuum-sintered parts displayed an elongation of 70% and a UTS of 550 MPa. Fractography analysis using microscopy and micro-computed tomography revealed ductile fracture in the vacuum-sintered samples, while the H2-sintered parts exhibited a combination of brittle and ductile fracture due to remnant pores in the microstructure. 
    more » « less