skip to main content


This content will become publicly available on June 26, 2024

Title: Losing Focus: Can It Be Useful in Robotic Laser Surgery?

Lasers are an essential tool in modern medical practice, and their applications span a wide spectrum of specialties. In laryngeal microsurgery, lasers are frequently used to excise tumors from the vocal folds [1]. Several research groups have recently developed robotic systems for these procedures [2-4], with the goal of providing enhanced laser aiming and cutting precision. Within this area of research, one of the problems that has received considerable attention is the automatic control of the laser focus. Briefly, laser focusing refers to the process of optically adjusting a laser beam so that it is concentrated in a small, well-defined spot – see Fig. 1. In surgical applications, tight laser focusing is desirable to maximize cutting efficiency and precision; yet, focusing can be hard to perform manually, as even slight variations (< 1 mm) in the focal distance can significantly affect the spot size. Motivated by these challenges, Kundrat and Schoob [3] recently introduced a technique to robotically maintain constant focal distance, thus enabling accurate, consistent cutting. In another study, Geraldes et al. [4] developed an automatic focus control system based on a miniaturized varifocal mirror, and they obtained spot sizes as small as 380 μm for a CO2 laser beam. Whereas previous work has mainly dealt with the problem of creating – and maintaining – small laser spots, in this paper we propose to study the utility of defocusing surgical lasers. In clinical practice, physicians defocus a laser beam whenever they wish to change its effect from cutting to heating – e.g., to thermally seal a blood vessel [5]. To the best of our knowledge, no previous work has studied the problem of robotically regulating the laser focus to achieve controlled tissue heating, which is precisely the contribution of the present manuscript. In the following sections, we first briefly review the dynamics of thermal laser-tissue interactions and then propose a controller capable of heating tissue according to a prescribed temperature profile. Laser-tissue interactions are generally considered hard to control due to the inherent inhomogeneity of biological tissue [6], which can create significant variability in its thermal response to laser irradiation. In this paper, we use methods from nonlinear control theory to synthesize a temperature controller capable of working on virtually any tissue type without any prior knowledge of its physical properties.

 
more » « less
Award ID(s):
1922761
NSF-PAR ID:
10463927
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
THE HAMLYN SYMPOSIUM ON MEDICAL ROBOTICS
Page Range / eLocation ID:
135 to 136
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Creation of sub-epithelial voids within scarred vocal folds via ultrafast laser ablation may help in localization of injectable therapeutic biomaterials towards an improved treatment for vocal fold scarring. Several ultrafast laser surgery probes have been developed for precise ablation of surface tissues; however, these probes lack the tight beam focusing required for sub-surface ablation in highly scattering tissues such as vocal folds. Here, we present a miniaturized ultrafast laser surgery probe designed to perform sub-epithelial ablation in vocal folds. The requirement of high numerical aperture for sub-surface ablation, in addition to the small form factor and side-firing architecture required for clinical use, made for a challenging optical design. An Inhibited Coupling guiding Kagome hollow core photonic crystal fiber delivered micro-Joule level ultrashort pulses from a high repetition rate fiber laser towards a custom-built miniaturized objective, producing a 1/e2focal beam radius of 1.12 ± 0.10 μm and covering a 46 × 46 μm2scan area. The probe could deliver up to 3.8 μJ pulses to the tissue surface at 40% transmission efficiency through the entire system, providing significantly higher fluences at the focal plane than were required for sub-epithelial ablation. To assess surgical performance, we performed ablation studies on freshly excised porcine hemi-larynges and found that large area sub-epithelial voids could be created within vocal folds by mechanically translating the probe tip across the tissue surface using external stages. Finally, injection of a model biomaterial into a 1 × 2 mm2void created 114 ± 30 μm beneath the vocal fold epithelium surface indicated improved localization when compared to direct injection into the tissue without a void, suggesting that our probe may be useful for pre-clinical evaluation of injectable therapeutic biomaterials for vocal fold scarring therapy. With future developments, the surgical system presented here may enable treatment of vocal fold scarring in a clinical setting.

     
    more » « less
  2.  
    more » « less
  3. The creation of multiarticulated mechanisms for use with minimally invasive surgical tools is difficult because of fabrication, assembly, and actuation challenges on the millimeter scale of these devices. Nevertheless, such mechanisms are desirable for granting surgeons greater precision and dexterity to manipulate and visualize tissue at the surgical site. Here, we describe the construction of a complex optoelectromechanical device that can be integrated with existing surgical tools to control the position of a fiber-delivered laser. By using modular assembly and a laminate fabrication method, we are able to create a smaller and higher-bandwidth device than the current state of the art while achieving a range of motion similar to existing tools. The device we present is 6 millimeters in diameter and 16 millimeters in length and is capable of focusing and steering a fiber-delivered laser beam at high speed (1.2-kilohertz bandwidth) over a large range (over ±10 degrees in both of two axes) with excellent static repeatability (200 micrometers).

     
    more » « less
  4. A mathematical model is derived to predict the maximum speed of a focused laser beam in the laser cutting of thin materials. This model contains only two material parameters and is used to obtain an explicit relationship between the cutting speed and laser parameters. The model shows that there exists an optimal focal spot radius with which cutting speed is maximized for a given laser power. We compare the modeling results with experiments and find a good agreement after correcting laser fluence. This work is useful for the practical application of lasers in processing thin materials such as sheets and panels.

     
    more » « less
  5. Devaraj, Arun (Ed.)
    Cross sectioning is a critical sample preparation technique used in a wide range of applications, that enables investigation of buried layers and subsurface features or defects. State-of-the-art cross-sectioning methods, each have their own pros and cons, but generally suffer from a tradeoff between throughput and accuracy. Mechanical methods are fast but lack accuracy. On the other hand, ion-based methods, such as focused ion beam (FIB), offer high resolutions but are slow. Lasers, which can potentially improve this tradeoff, face multiple challenges that include creation of heat affected zones (HAZs), undesirably large spot size as well as material redeposition. In this work, we utilized, for the first time, a femtosecond pulsed laser, which has been shown to cause minimal to zero HAZ, for rapid creation of large cross sections that are comparable with FIB cross sections in quality. The laser was integrated with a targeted CO 2 gas delivery system for redeposition control and beam tail curtailing, and a hard mask for top surface protection and further shrinkage of the effective spot size. The performance of the proposed system is showcased through real world examples that compare the throughput and quality resulted from the laser and FIB cross sectioning techniques. 
    more » « less