skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Comment on “Seismic Velocity Variations at Different Depths Reveal the Dynamic Evolution Associated With the 2018 Kilauea Eruption” by Liu et al.
Abstract Liu et al. (2022,https://doi.org/10.1029/2021GL093691) used Rayleigh waves extracted from the cross‐correlation of ambient noise recorded by two stations to monitor the seismic velocity variations associated with the 2018 Kı̄lauea eruption. However, their study ignored the fact that the tremors on the Island of Hawai'i were dominated by a source at the Kı̄lauea summit before the eruption. Close inspection of the waveforms of the station pair PAUD‐STCD shows a simple, mistakenly identified wave traveling direction in Liu et al. (2022,https://doi.org/10.1029/2021GL093691). A correct wave traveling direction agrees with the noise source model, where the dominant tremor source should be at the Kı̄lauea summit. Because of the drastic change in the tremor source after the eruption, the cross‐correlation of the tremor records may reflect predominantly changes in the source rather than in the medium properties between the two stations.  more » « less
Award ID(s):
1949620
PAR ID:
10464044
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
18
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We report on the mountain top observation of three terrestrial gamma‐ray flashes (TGFs) that occurred during the summer storm season of 2021. To our knowledge, these are the first TGFs observed in a mountaintop environment and the first published European TGFs observed from the ground. A gamma‐ray sensitive detector was located at the base of the Säntis Tower in Switzerland and observed three unique TGF events with coincident radio sferic data characteristic of TGFs seen from space. We will show an example of a “slow pulse” radio signature (Cummer et al., 2011,https://doi.org/10.1029/2011GL048099; Lu et al., 2011,https://doi.org/10.1029/2010JA016141; Pu et al., 2019,https://doi.org/10.1029/2019GL082743; Pu et al., 2020,https://doi.org/10.1029/2020GL089427), a −EIP (Lyu et al., 2016,https://doi.org/10.1002/2016GL070154; Lyu et al., 2021,https://doi.org/10.1029/2021GL093627; Wada et al., 2020,https://doi.org/10.1029/2019JD031730), and a double peak TGF associated with an extraordinarily powerful and complicated positive‐polarity sferic, where each TGF peak is possibly preceded by a short burst of stepped leader emission. 
    more » « less
  2. Abstract We compared the performance of DREAM3D simulations in reproducing the long‐term radiation belt dynamics observed by Van Allen Probes over the entire year of 2017 with various boundary conditions (BCs) and model inputs. Specifically, we investigated the effects of three different outer boundary conditions, two different low‐energy boundary conditions for seed electrons, four different radial diffusion (RD) coefficients (DLL), four hiss wave models, and two chorus wave models from the literature. Using the outer boundary condition driven by GOES data, our benchmark simulation generally well reproduces the observed radiation belt dynamics insideL* = 6, with a better model performance at lowerμthan higherμ, whereμis the first adiabatic invariant. By varying the boundary conditions and inputs, we find that: (a) The data‐driven outer boundary condition is critical to the model performance, while adding in the data‐driven seed population doesn't further improve the performance. (b) The model shows comparable performance withDLLfrom Brautigam and Albert (2000,https://doi.org/10.1029/1999ja900344), Ozeke et al. (2014,https://doi.org/10.1002/2013ja019204), and Liu et al. (2016,https://doi.org/10.1002/2015gl067398), while withDLLfrom Ali et al. (2016,https://doi.org/10.1002/2016ja023002) the model shows less RD compared to data. (c) The model performance is similar with data‐based hiss models, but the results show faster loss is still needed inside the plasmasphere. (d) The model performs similarly with the two different chorus models, but better capturing the electron enhancement at higherμusing the Wang et al. (2019,https://doi.org/10.1029/2018ja026183) model due to its stronger wave power, since local heating for higher energy electrons is under‐reproduced in the current model. 
    more » « less
  3. Abstract We show that atmospheric gravity waves can generate plasma ducts and irregularities in the plasmasphere using the coupled SAMI3/WACCM‐X model. We find the equatorial electron density is irregular as a function of longitude which is consistent with CRRES measurements (Clilverd et al., 2007,https://doi.org/10.1029/2007ja012416). We also find that plasma ducts can be generated forL‐shells in the range 1.5–3.0 with lifetimes of ∼ 0.5 hr; this is in line with observations of ducted VLF wave propagation with lifetimes of 0.5–2.0 hr (Clilverd et al., 2008,https://doi.org/10.1029/2007ja012602; Singh et al., 1998,https://doi.org/10.1016/s1364-6826(98)00001-7). 
    more » « less
  4. Abstract Wave breaking induced bubbles contribute a significant part of air‐sea gas fluxes. Recent modeling of the sea state dependent CO2flux found that bubbles contribute up to ∼40% of the total CO2air‐sea fluxes (Reichl & Deike, 2020,https://doi.org/10.1029/2020gl087267). In this study, we implement the sea state dependent bubble gas transfer formulation of Deike and Melville (2018,https://doi.org/10.1029/2018gl078758) into a spectral wave model (WAVEWATCH III) incorporating the spectral modeling of the wave breaking distribution from Romero (2019,https://doi.org/10.1029/2019gl083408). We evaluate the accuracy of the sea state dependent gas transfer parameterization against available measurements of CO2gas transfer velocity from 9 data sets (11 research cruises, see Yang et al. (2022,https://doi.org/10.3389/fmars.2022.826421)). The sea state dependent parameterization for CO2gas transfer velocity is consistent with observations, while the traditional wind‐only parameterization used in most global models slightly underestimates the observations of gas transfer velocity. We produce a climatology of the sea state dependent gas transfer velocity using reanalysis wind and wave data spanning 1980–2017. The climatology shows that the enhanced gas transfer velocity occurs frequently in regions with developed sea states (with strong wave breaking and high significant wave height). The present study provides a general sea state dependent parameterization for gas transfer, which can be implemented in global coupled models. 
    more » « less
  5. Abstract We introduce a new framework called Machine Learning (ML) based Auroral Ionospheric electrodynamics Model (ML‐AIM). ML‐AIM solves a current continuity equation by utilizing the ML model of Field Aligned Currents of Kunduri et al. (2020,https://doi.org/10.1029/2020JA027908), the FAC‐derived auroral conductance model of Robinson et al. (2020,https://doi.org/10.1029/2020JA028008), and the solar irradiance conductance model of Moen and Brekke (1993,https://doi.org/10.1029/92gl02109). The ML‐AIM inputs are 60‐min time histories of solar wind plasma, interplanetary magnetic fields (IMF), and geomagnetic indices, and its outputs are ionospheric electric potential, electric fields, Pedersen/Hall currents, and Joule Heating. We conduct two ML‐AIM simulations for a weak geomagnetic activity interval on 14 May 2013 and a geomagnetic storm on 7–8 September 2017. ML‐AIM produces physically accurate ionospheric potential patterns such as the two‐cell convection pattern and the enhancement of electric potentials during active times. The cross polar cap potentials (ΦPC) from ML‐AIM, the Weimer (2005,https://doi.org/10.1029/2004ja010884) model, and the Super Dual Auroral Radar Network (SuperDARN) data‐assimilated potentials, are compared to the ones from 3204 polar crossings of the Defense Meteorological Satellite Program F17 satellite, showing better performance of ML‐AIM than others. ML‐AIM is unique and innovative because it predicts ionospheric responses to the time‐varying solar wind and geomagnetic conditions, while the other traditional empirical models like Weimer (2005,https://doi.org/10.1029/2004ja010884) designed to provide a quasi‐static ionospheric condition under quasi‐steady solar wind/IMF conditions. Plans are underway to improve ML‐AIM performance by including a fully ML network of models of aurora precipitation and ionospheric conductance, targeting its characterization of geomagnetically active times. 
    more » « less