Evidence from landscape evolution may provide critical constraints for past geodynamic processes, but has been limited by the large uncertainties of topographic reconstructions. Here we present continuous 30-million-year rock uplift histories for three catchments in the Calabrian forearc of southern Italy, using a data-driven inversion of tectonic geomorphology measurements. We find that rock uplift rates were high (>1 mm yr−1) from about 30 to 25 million years ago (Ma) and progressively declined to <0.4 mm yr−1 by ~15 Ma, then remained low before abruptly increasing around 1.5–1.0 Ma. These uplift rates do not match the forearc’s subduction velocity record, implying that uplift was not dominated by crustal thickening due to subduction-driven sediment influx. Through comparisons with slab descent reconstructions, we instead argue that the forearc uplift history primarily reflects the progressive establishment and abrupt destruction of an upper-mantle convection cell with strong negative buoyancy. We suggest that the convection cell vigour increased as the slab-induced mantle flow field began to interact with the 660-km mantle transition zone, causing uplift rates to decline from 25 to 15 Ma. Then, once the slab encountered the transition zone, the fully established convection cell subdued uplift rates, before being disrupted by slab fragmentation in the Quaternary, driving rapid forearc uplift.
more »
« less
Tectonic and Paleoclimatic Setting for Hominin Evolution in Eastern Africa
As dynamic processes in the Earth’s mantle stretch and thin large sectors of the African plate, broad plateaus interrupted by deep valleys and flanking mountains have formed at the Earth’s surface. These vertical and horizontal crustal movements occur concurrent with global climate changes, both of which happen over diverse spatial and temporal scales. Together, they modulated eastern Africa’s habitats for early hominins, and for flora and fauna in general. The habitat for hominin evolution, therefore, is shaped by bottom-up and top-down processes. Broad plateau uplift in Ethiopia had initiated by 30 Ma, coincident with or after flood magmatism at 45 Ma when dry seasonal woodland environments initiated in eastern Africa. The fossil-rich sedimentary sequences partially filling the 30–70-km-wide rift basins record the history of human evolution, as well as the complex interplay between climate change, uplift, volcanism, and faulting in equatorial Africa. The lake shorelines and hydrothermal systems served as oases for hunter-gatherers, and the rough topography of the faulted landscape may have served as refugia. Here, we outline the relevant time–space patterns to establish the geodynamic and paleoclimatic context for human evolution in eastern Africa.
more »
« less
- Award ID(s):
- 2039963
- PAR ID:
- 10464165
- Date Published:
- Journal Name:
- Elements
- Volume:
- 19
- Issue:
- 2
- ISSN:
- 1811-5209
- Page Range / eLocation ID:
- 82 to 87
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Miocene Climatic Optimum (MCO; ~17–14 Ma) is one of Earth’s most recent protracted warming events and serves as an analog to anthropogenic climate change. Constraining the land surface response to the MCO is critical for paleoclimate model validation and for predictions of future climatic response. However, nonmarine records across the MCO interval are limited. The hinterland and foreland basins of the southern Central Andes in Argentina preserve stratigraphic records across the MCO. These continental deposits record the onset of dune fields at >30 Ma to ~19 Ma, with widespread eolian deposition at ~22–17 Ma. We document a regional change from eolian dune fields to fluvial and lacustrine conditions at ~18–15 Ma, broadly coincident with the MCO, over ~1000 km along-strike, in localities that would have occupied both high and low elevation positions and from different tectono-morphic settings. These paleoenvironmental changes are corroborated by new climate model simulations which show increased seasonality and precipitation along the eastern flank of the southern Central Andes during the MCO. Our results support a shift from arid to more humid and seasonal conditions during the MCO in the southern Central Andes, likely driven by intensification of the South American monsoonmore » « less
-
Quantifying the impacts of past changes in tectonics or climate on mountain topography has proven challenging. The incision of the eastern Central Andean Plateau has been interpreted as both a result of deformation-related uplift and erosion and climate-driven erosion. Here, we contribute >100 new apatite and zircon (U-Th)/He and fission-track dates from 51 new and eight previous bedrock samples. These samples were combined with previous thermochronometer data from three ∼190-km-long and ∼200-km-apart across-strike transects along the eastern margin of the Andean Plateau in southern Peru. We discuss age-distance, age-elevation, and inverse thermal history model results along these transects to constrain the timing and extent of recent canyon incision compared to the region’s long-term (∼40 Myrs) exhumation history. Results indicate that, along the plateau flank, long-term, deformation-related exhumation is superimposed by a regional, synchronous canyon incision-related signal since ∼4–3 Ma. This incision is traceable from at least the Abancay Deflection in southern Peru to southern Bolivia along the eastern Central Andes. Based on the regional and synchronous character of canyon incision across areas with different deformation histories and exhumation magnitude, we suggest that paleoclimate change was a significant contributor to incision. However, structural processes resulting in surface uplift, erosion, and exhumation continued post-mid Miocene and contributed to the observed exhumation magnitude.more » « less
-
null (Ed.)Abstract. The Neogene and Quaternary are characterized by enormous changes in globalclimate and environments, including global cooling and the establishment ofnorthern high-latitude glaciers. These changes reshaped global ecosystems,including the emergence of tropical dry forests and savannahs that are foundin Africa today, which in turn may have influenced the evolution of humansand their ancestors. However, despite decades of research we lack long,continuous, well-resolved records of tropical climate, ecosystem changes,and surface processes necessary to understand their interactions andinfluences on evolutionary processes. Lake Tanganyika, Africa, contains themost continuous, long continental climate record from the mid-Miocene(∼10 Ma) to the present anywhere in the tropics and has longbeen recognized as a top-priority site for scientific drilling. The lake issurrounded by the Miombo woodlands, part of the largest dry tropical biomeon Earth. Lake Tanganyika also harbors incredibly diverse endemic biotaand an entirely unexplored deep microbial biosphere, and it provides textbookexamples of rift segmentation, fault behavior, and associated surfaceprocesses. To evaluate the interdisciplinary scientific opportunities thatan ICDP drilling program at Lake Tanganyika could offer, more than 70scientists representing 12 countries and a variety of scientificdisciplines met in Dar es Salaam, Tanzania, in June 2019. The teamdeveloped key research objectives in basin evolution, source-to-sinksedimentology, organismal evolution, geomicrobiology, paleoclimatology,paleolimnology, terrestrial paleoecology, paleoanthropology, andgeochronology to be addressed through scientific drilling on LakeTanganyika. They also identified drilling targets and strategies, logisticalchallenges, and education and capacity building programs to be carried outthrough the project. Participants concluded that a drilling program at LakeTanganyika would produce the first continuous Miocene–present record fromthe tropics, transforming our understanding of global environmental change,the environmental context of human origins in Africa, and providing adetailed window into the dynamics, tempo and mode of biologicaldiversification and adaptive radiations.more » « less
-
The utilization of thermal-chronological data to constrain mountain building processes exploits the links among rock uplift, exhumation, and cooling during orogenesis. Conceptually, periods of rapid uplift and associated denudation will lead to cooling of rocks as they approach Earth’s surface. The linkage between uplift and exhumation can be complex, but in practice exhumation is often assumed to directly track uplift. The reconstruction of temperature-time histories via thermochronologic systems provides a proxy method to relate the cooling of rock as it is exhumed toward the surface to orogenesis. For the rapid exhumation rates that can occur in active orogenic systems the thermal history will be complex as a result of heat advection, rates of propagation of thermal perturbations, and other processes that affect the cooling behavior. These effects become amplified as exhumation rates increase, and in regions experiencing exhumation rates greater than ∼0.2–0.3 mm/yr (0.2–0.3 km/Ma) simple assumptions of cooling through a constant geotherm will bias the subsequent interpretation. Here we explore, through a suite of generalized models, the impact of exhumation rate and duration on the resulting thermal history and apparent age results. We then apply lessons from these simple exhumation systems to data sets from the high-relief ranges along the eastern margin of the Tibetan Plateau to determine exhumation histories constrained by those data. The resulting exhumation histories provide constraints on the onset of Cenozoic exhumation, the subsequent pace of exhumation, and on the tectonic history of one of the major fault systems in the central Longmen Shan.more » « less
An official website of the United States government

