skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Physiological responses to hypoxia are constrained by environmental temperature in heterothermic tenrecs
ABSTRACT Malagasy tenrecs are placental hibernating mammals that seal the entrances to their burrows and hibernate either singly or in groups for 8–9 months, which is likely to create a hypoxic and hypercapnic burrow environment. Therefore, we hypothesized that tenrecs are tolerant to environmental hypoxia and hypercapnia. Many hypoxia- and hypercapnia-tolerant fossorial mammals respond to hypoxia by decreasing metabolic rate and thermogenesis, and have blunted ventilatory responses to both environmental hypoxia and hypercapnia. However, tenrecs exhibit extreme metabolic and thermoregulatory plasticity, which exceeds that of most heterothermic mammals and approaches that of ectothermic reptiles. Thus, we predicted that tenrecs would have abnormal physiological responses to hypoxia and hypercapnia relative to other fossorial mammals. To test this, we exposed common tenrecs (Tenrec ecaudatus) to moderate and severe hypoxia (9 and 4% O2) or hypercapnia (5 and 10% CO2) in either 28 or 16°C while non-invasively measuring metabolic rate, thermogenesis and ventilation. We found that tenrecs exhibit robust metabolic decreases in both hypoxia and hypercapnia. Furthermore, tenrecs have blunted ventilatory responses to both hypoxia and hypercapnia, and these responses are highly temperature sensitive such that they are reduced or absent in 16°C. Thermoregulation was highly variable in 16°C but constrained in 28°C across all treatment conditions and was not impacted by hypoxia or hypercapnia, unlike in other heterothermic mammals. Taken together, our results indicate that physiological responses to hypoxia and hypercapnia in tenrecs are highly dependent on environmental temperature and differ from those of other mammalian heterotherms.  more » « less
Award ID(s):
1655091
PAR ID:
10464189
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Experimental Biology
Volume:
226
Issue:
6
ISSN:
0022-0949
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Challenging environmental conditions can drive the evolution of extreme physiological traits. The naked mole-rat has evolved to survive and thrive in a low oxygen, high carbon dioxide environment that would be deadly to humans and most other mammals. The naked mole-rat’s lifestyle is unusual in that this species combines subterranean living and living in large, social groups of up to 300 + individuals. Many respiring animals in a closed environment can lead to depletion of oxygen (hypoxia) and accumulation of carbon dioxide (hypercapnia). Naked mole-rats display a variety of physiological traits that negate the adverse effects of living in this atmosphere. For hypoxia tolerance, naked mole-rats have a low resting metabolism, high affinity hemoglobin, intrinsic brain tolerance, the ability to use fructose for anaerobic glycolysis, and the ability to enter a low energy, suspended animation-like state. For hypercapnia tolerance, these animals have a mutation in a voltage gated sodium channel that effectively eliminates neuronal responses to tissue acidosis. In other mammals, acidosis from exposure to high concentrations of carbon dioxide induces pain and pulmonary edema. Understanding these mechanisms of extreme physiology is not only inherently interesting, but it may lead to biomedical breakthroughs in research on heart attacks, strokes, and pain pathologies. 
    more » « less
  2. null (Ed.)
    Animals native to the hypoxic and cold environment at high altitude provide an excellent opportunity to elucidate the integrative mechanisms underlying the adaptive evolution and plasticity of complex traits. The capacity for aerobic thermogenesis can be a critical determinant of survival for small mammals at high altitude, but the physiological mechanisms underlying the evolution of this performance trait remain unresolved. We examined this issue by comparing high-altitude deer mice ( Peromyscus maniculatus ) with low-altitude deer mice and white-footed mice ( P. leucopus ). Mice were bred in captivity and adults were acclimated to each of four treatments: warm (25°C) normoxia, warm hypoxia (12 kPa O 2 ), cold (5°C) normoxia or cold hypoxia. Acclimation to hypoxia and/or cold increased thermogenic capacity in deer mice, but hypoxia acclimation led to much greater increases in thermogenic capacity in highlanders than in lowlanders. The high thermogenic capacity of highlanders was associated with increases in pulmonary O 2 extraction, arterial O 2 saturation, cardiac output and arterial–venous O 2 difference. Mechanisms underlying the evolution of enhanced thermogenic capacity in highlanders were partially distinct from those underlying the ancestral acclimation responses of lowlanders. Environmental adaptation has thus enhanced phenotypic plasticity and expanded the physiological toolkit for coping with the challenges at high altitude. 
    more » « less
  3. To better understand temperature's role in the interaction between local evolutionary adaptation and physiological plasticity, we investigated acclimation effects on metabolic performance and thermal tolerance among natural Fundulus heteroclitus (small estuarine fish) populations from different thermal environments. Fundulus heteroclitus populations experience large daily and seasonal temperature variations, as well as local mean temperature differences across their large geographical cline. In this study, we use three populations: one locally heated (32°C) by thermal effluence (TE) from the Oyster Creek Nuclear Generating Station, NJ, and two nearby reference populations that do not experience local heating (28°C). After acclimation to 12 or 28°C, we quantified whole-animal metabolic (WAM) rate, critical thermal maximum (CT max ) and substrate-specific cardiac metabolic rate (CaM, substrates: glucose, fatty acids, lactate plus ketones plus ethanol, and endogenous (i.e. no added substrates)) in approximately 160 individuals from these three populations. Populations showed few significant differences due to large interindividual variation within populations. In general, for WAM and CT max , the interindividual variation in acclimation response (log 2 ratio 28/12°C) was a function of performance at 12°C and order of acclimation (12–28°C versus 28–12°C). CT max and WAM were greater at 28°C than 12°C, although WAM had a small change (2.32-fold) compared with the expectation for a 16°C increase in temperature (expect 3- to 4.4-fold). By contrast, for CaM, the rates when acclimatized and assayed at 12 or 28°C were nearly identical. The small differences in CaM between 12 and 28°C temperature were partially explained by cardiac remodeling where individuals acclimatized to 12°C had larger hearts than individuals acclimatized to 28°C. Correlation among physiological traits was dependent on acclimation temperature. For example, WAM was negatively correlated with CT max at 12°C but positively correlated at 28°C. Additionally, glucose substrate supported higher CaM than fatty acid, and fatty acid supported higher CaM than lactate, ketones and alcohol (LKA) or endogenous. However, these responses were highly variable with some individuals using much more FA than glucose. These findings suggest interindividual variation in physiological responses to temperature acclimation and indicate that additional research investigating interindividual may be relevant for global climate change responses in many species. 
    more » « less
  4. ABSTRACT The existence of sex‐specific differences in phenotypic traits is widely recognized. Yet they are often ignored in studies looking at the impact of global changes on marine organisms, particularly within the context of combined drivers that are known to elicit complex interactions. We tested sex‐specific physiological responses of the cosmopolitan and ecologically important marine copepodAcartia tonsaexposed to combined hypoxia and marine heatwave (MHW) conditions, both of which individually strongly affect marine ectotherms. Females and males were acutely exposed for 5 days to a combination of either control (18°C) or a high temperature mimicking a MHW (25°C), and normoxia (100% O2sat.) or mild hypoxia (35% O2sat.). Life‐history traits, as well as sex‐specific survival and physiological traits, were measured. Females had overall higher thermal tolerance levels and responded differently than males when exposed to the combined global change drivers investigated. Females also showed lower metabolic thermal sensitivity when compared to males. Additionally, the MHW exerted a dominant effect on the traits investigated, causing a lower survival and higher metabolic rate at 25°C. However, egg production rates appeared unaffected by hypoxia and MHW conditions. Our results showed that MHWs could strongly affect copepods' survival, that combined exposure to hypoxia and MHW exerted an interactive effect only on CTmax, and that sex‐specific vulnerability to these global change drivers could have major implications for population dynamics. Our results highlight the importance of considering the differences in the responses of females and males to rapid environmental changes to improve the implementation of climate‐smart conservation approaches. 
    more » « less
  5. Neuroepithelial cells (NECs) within the fish gill contain the monoamine neurochemical serotonin (5-HT), sense changes in the partial pressure of oxygen (PO2) in the surrounding water and blood, and initiate the cardiovascular and ventilatory responses to hypoxia. The distribution of neuroepithelial cells (NECs) within the gill is known for some fish species but not for the Gulf toadfish, Opsanus beta, a fish that has always been considered hypoxia tolerant. Furthermore, whether NEC size, number, or distribution changes after chronic exposure to hypoxia, has never been tested. We hypothesize that toadfish NECs will respond to hypoxia with an increase in NEC size, number, and a change in distribution. Juvenile toadfish (N = 24) were exposed to either normoxia (21.4 ± 0.0 kPa), mild hypoxia (10.2 ± 0.3 kPa), or severe hypoxia (3.1 ± 0.2 kPa) for 7 days and NEC size, number, and distribution for each O2 regime were measured. Under normoxic conditions, juvenile toadfish have similar NEC size, number, and distribution as other fish species with NECs along their filaments but not throughout the lamellae. The distribution of NECs did not change with hypoxia exposure. Mild hypoxia exposure had no effect on NEC size or number, but fish exposed to severe hypoxia had a higher NEC density (# per mm filament) compared to mild hypoxia-exposed fish. Fish exposed to severe hypoxia also had longer gill filament lengths that could not be explained by body weight. These results point to signs of phenotypic plasticity in these juvenile, lab-bred fish with no previous exposure to hypoxia and a strategy to deal with hypoxia exposure that differs in toadfish compared to other fish. 
    more » « less