skip to main content


Title: Subseasonal Features of the Indian Monsoon
Abstract

The Indian monsoon is of utmost concern to agriculture, the economy, and the livelihoods of billions in South Asia. However, little attention has been paid to the possibility of distinct subseasonal episodes phase-locked in the Indian monsoon annual cycle. This study addresses this gap by utilizing the self-organizing map (SOM) method to objectively classify six distinct subseasonal stages based on the 850-hPa wind fields. Each subseasonal stage ranges from 23 to 90 days. The Indian summer monsoon (ISM) consists of three substages, the ISM-onset, ISM-peak, and ISM-withdrawal, altogether contributing to 82% of the annual precipitation. The three substages signify the rapid northward advance, dominance, and gradual southward retreat of southwesterlies from mid-May to early October. The winter monsoon also comprises three substages (fall, winter, and spring), distinguishable by the latitude of the Arabian Sea high pressure ridge and hydrological conditions. This study proposes two compact indices based on zonal winds in the northern and southern Arabian Sea to measure the winter and summer monsoons, respectively. These indices capture the development and turnabouts of the six SOM-derived stages and can be used for subseasonal monsoon monitoring and forecasts. The spring and the ISM-onset episodes are highly susceptible to compound hazards of droughts and heatwaves, while the greatest flood risk occurs during the ISM-peak stage. The fall stage heralds the peak season for tropical storms over the Arabian Sea and the Bay of Bengal. The annual start and end dates of the ISM-peak are highly correlated (0.6–0.8) with the criteria-based dates proposed previously, supporting the delineation of the Indian monsoon subseasonal features.

Significance Statement

This research explores the existence of subseasonal features in the Indian monsoon annual cycle. Through the use of machine learning, we discover that the Indian summer monsoon and winter monsoon each consist of three substages. These substages’ evolution can be measured by two compact indices proposed herein, which can aid in subseasonal monsoon monitoring and forecasts in South Asia. Pertaining to hazard adaptations, this work pinpoints the subseasonal episodes most susceptible to droughts, heatwaves, floods, and tropical storms. High correlations are obtained when validating the substages’ yearly start and end dates against those documented in the existing literature, offering credibility to the subseasonal features of the Indian monsoon.

 
more » « less
NSF-PAR ID:
10464244
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Volume:
36
Issue:
20
ISSN:
0894-8755
Format(s):
Medium: X Size: p. 7199-7211
Size(s):
["p. 7199-7211"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Over the late Holocene, a variety of hydroclimate-sensitive proxies have identified substantial, multidecadal changes in Indian summer monsoon (ISM) precipitation, the most prominent of which is the “4.2 ka event”. This interval, dated to ~4.2-3.9 ka, is associated with severe droughts across South Asia that are linked to societal change. Given the absence of the 4.2 ka event in polar records, the 4.2 ka event is generally associated with low latitude forcings, but no clear consensus on its origins has been reached. We investigated the ISM response to the 4.2 ka event through analysis of aragonite stalagmites from Siddha cave, formed in the lower Paleozoic Dhading dolomite in the Pokhara Valley of central Nepal (28.0˚N, 84.1˚E; ~850 m.a.s.l.). The climate of this region is dominated by small monthly variations in air temperature (21±5˚C) but strong precipitation seasonality associated with the ISM: ~80% of the annual 3900 mm of rainfall occurs between June and September. High uranium and low detrital thorium abundances in these stalagmites yield precise U/Th ages that all fall within stratigraphic order. These dates reveal continuous growth from 4.30-2.26 ka, interrupted only by a hiatus from 3.27-3.10 ka. Overlap with coeval aragonite stalagmites reveals generally consistent trends in carbon and oxygen isotope ratios, suggesting that these stalagmites reflect environmental variability and not secondary (e.g., kinetic) effects. Many stalagmite-based paleomonsoon reconstructions rely on oxygen isotope ratios, which track amount effects in regional rainfall. However, our on-going rainwater collection and analysis program, as well as a previous study conducted in Kathmandu, 120 km the east of Siddha cave, reveals that amount effects in precipitation are weak in this region, particularly during the monsoon season, and thus we rely instead on carbon isotope ratios, which have been demonstrated to track site-specific effective precipitation. Siddha cave stalagmite carbon isotopes, in contrast to other South Asian proxy records, indicate that ISM rainfall increased at Siddha cave from 4.13-3.91 ka. As a further test of this result, we analyzed uranium abundances in the section spanning 4.3-3.4 ka. Uranium serves as an indicator of prior aragonite precipitation and thus of hydroclimate, and like carbon isotopes, suggests increased ISM rainfall coincident with the 4.2 ka event. This precipitation anomaly is nearly identical in timing and structure but anti-phased with stalagmites from Mawmluh cave, northeastern India. We investigated the climatic origins of this precipitation dipole using observational data from the Global Precipitation Climatology Centre (GPCC) and Hadley Center Sea Ice and Sea Surface Temperature (HadISST) products. Preliminary spatial composites suggest that large precipitation differences between Mawmluh and Siddha caves are associated with SST anomalies in the equatorial Pacific. Additionally, superposed Epoch Analysis shows relatively rapid eastern Indian Ocean cooling during the summer monsoon season coeval with large precipitation differences between these sites. Our findings lend support to a tropical Indo-Pacific origin of the 4.2 ka event. 
    more » « less
  2. Abstract

    Coastal hypoxia—harmfully low levels of oxygen—is a mounting problem that jeopardizes coastal ecosystems and economies. The northern Indian Ocean is particularly susceptible due to human‐induced impacts, vast naturally occurring oxygen minimum zones, and strong variability associated with the seasonal monsoons and interannual Indian Ocean Dipole (IOD). We assess hownaturalfactors influence the risk of coastal hypoxia by combining a large set of oxygen measurements with satellite observations to examine how the IOD amplifies or suppresses seasonal hypoxia tied to the Asian Monsoon. We show that on both seasonal and interannual timescales hypoxia is controlled by wind‐ and coastal Kelvin wave‐driven upwelling of oxygen‐poor waters onto the continental shelf and reinforcing biological feedbacks (increased subsurface oxygen demand). Seasonally, the risk of hypoxia is highest in the western Arabian Sea in summer/fall (71% probability of hypoxia). Major year‐to‐year impacts attributed to the IOD occur during positive phases along the eastern Bay of Bengal (EBoB), where the risk of coastal hypoxia increases from moderate to high in summer/fall (21%–46%) and winter/spring (31%–42%), and along the eastern Arabian Sea (i.e., India, Pakistan) where the risk drops from high to moderate in summer/fall (53%–34%). Strong effects are also seen in the EBoB during negative IOD phases, when the risk reduces from moderate to low year‐round (∼25% to ∼5%). This basin‐scale mapping of hypoxic risk is key to aid national and international efforts that monitor, forecast, and mitigate the impacts of hypoxia on coastal ecosystems and ecosystem services.

     
    more » « less
  3. Abstract

    Abrupt monsoon onsets/retreats are indispensable targets for climate prediction and future projection, but the origins of their abruptness remain elusive. This study establishes the existence of three climatological Madden-Julian Oscillation (CMJO) episodes contributing to the rapid Australian summer monsoon retreat in mid-March, the South China Sea (or East Asian) summer monsoon onset in mid-May, and the Indian summer monsoon onset in early June. The CMJO displays a dynamically coherent convection-circulation structure resembling its transitionary counterpart, demonstrating its robustness as a convectively coupled circulation system and the tendency of the transient MJOs’ phase-lock to the annual cycle. The CMJO is inactive during the boreal winter due to destructive year-to-year modulations of El Niño-Southern Oscillation. We hypothesize that the interaction between atmospheric internal variability (MJO) and the insolation-forced slow annual cycle generates the sudden monsoon withdrawal/onset during the boreal spring. Understanding the factors determining the timing and location of the MJO’s phase-locking and its variability is vital for monsoon forecasting and climate projection.

     
    more » « less
  4. Nepal is positioned at the intersection of the Indian Summer Monsoon (ISM) and Subtropical Jet (SJ). Although the ISM is responsible for ~two thirds of annual precipitation, the SJ supplies precipitation in the winter and spring, with the jet migrating southwards to the subcontinent beginning in October and reaching its most southerly position in May before moving northward in June. Using the state-of-the-art Community Earth System Model Last Millennium Ensemble, we investigated potential drivers of the latitudinal position of the SJ over Nepal (referred to as the Himalayan Jet) between 850-2005 CE. The Himalayan Jet Latitude [HJL] is defined as the latitude with the highest wind speed at 200 mb for every longitude containing Nepal (Thapa et al., 2022). In order to identify dominant periodicities in HJL positioning, power-spectral-density analyses were used. For the purpose of evaluating drivers of HJL position, we identified years with a northward or southward displaced HJL, defined as being two standard deviations above or below the average annual HJL position, and used anomaly composites of precipitation, winds (upper- and lower-level), sea surface temperature, moisture transport (lower-level at 850mb), and geopotential height (upper-level at 200mb). Our analyses seem to point toward a link between HJL and the phases of the El Niño Southern Oscillation and Indian Ocean Dipole (IOD): Southerly HJL years often occur during years with an El Niño and a positive IOD event. Northerly HJL years often occur when a Rossby wave train appears to be present over Nepal, indicative of a remote teleconnection. We provide an initial quantification of the physical mechanics of how these climate modes in the Pacific, Indian, and Atlantic Oceans, including remote teleconnections transmitted via atmospheric Rossby Waves, affect HJL. These climate model simulation results are also compared with a sub-decadally-resolved, precisely-dated, composite stalagmite isotope record of ISM variability from Siddha Baba cave, central Nepal. 
    more » « less
  5. Nepal is positioned at the intersection of the Indian Summer Monsoon (ISM) and Subtropical Jet (SJ). Although the ISM is responsible for ~two thirds of annual precipitation, the SJ supplies precipitation in the winter and spring, with the jet migrating southwards to the subcontinent beginning in October and reaching its most southerly position in May before moving northward in June. Using the state-of-the-art Community Earth System Model Last Millennium Ensemble, we investigated potential drivers of the latitudinal position of the SJ over Nepal (referred to as the Himalayan Jet) between 850-2005 CE. The Himalayan Jet Latitude [HJL] is defined as the latitude with the highest wind speed at 200 mb for every longitude containing Nepal (Thapa et al., 2022). In order to identify dominant periodicities in HJL positioning, power-spectral-density analyses were used. For the purpose of evaluating drivers of HJL position, we identified years with a northward or southward displaced HJL, defined as being two standard deviations above or below the average annual HJL position, and used anomaly composites of precipitation, winds (upper- and lower-level), sea surface temperature, moisture transport (lower-level at 850mb), and geopotential height (upper-level at 200mb). Our analyses seem to point toward a link between HJL and the phases of the El Niño Southern Oscillation and Indian Ocean Dipole (IOD): Southerly HJL years often occur during years with an El Niño and a positive IOD event. Northerly HJL years often occur when a Rossby wave train appears to be present over Nepal, indicative of a remote teleconnection. We provide an initial quantification of the physical mechanics of how these climate modes in the Pacific, Indian, and Atlantic Oceans, including remote teleconnections transmitted via atmospheric Rossby Waves, affect HJL. These climate model simulation results are also compared with a sub-decadally-resolved, precisely-dated, composite stalagmite isotope record of ISM variability from Siddha Baba cave, central Nepal. 
    more » « less