Based on high-quality Apache Point Observatory Galactic Evolution Experiment (APOGEE) DR17 and Gaia DR3 data for 1742 red giants stars within 5 kpc of the Sun and not rotating with the Galactic disk ( V ϕ < 100 km s −1 ), we used the nonlinear technique of unsupervised analysis t-Distributed Stochastic Neighbor Embedding (t-SNE) to detect coherent structures in the space of ten chemical-abundance ratios: [Fe/H], [O/Fe], [Mg/Fe], [Si/Fe], [Ca/Fe], [C/Fe], [N/Fe], [Al/Fe], [Mn/Fe], and [Ni/Fe]. Additionally, we obtained orbital parameters for each star using the nonaxisymmetric gravitational potential GravPot16 . Seven structures are detected, including Splash, Gaia-Sausage-Enceladus (GSE), the high- α heated-disk population, N-C-O peculiar stars, and inner disk-like stars, plus two other groups that did not match anything previously reported in the literature, here named Galileo 5 and Galileo 6 (G5 and G6). These two groups overlap with Splash in [Fe/H], with G5 having a lower metallicity than G6, and they are both between GSE and Splash in the [Mg/Mn] versus [Al/Fe] plane, with G5 being in the α -rich in situ locus and G6 on the border of the α -poor in situ one. Nonetheless, their low [Ni/Fe] hints at a possible ex situ origin. Their orbital energy distributions are between Splash and GSE, with G5 being slightly more energetic than G6. We verified the robustness of all the obtained groups by exploring a large range of t-SNE parameters, applying it to various subsets of data, and also measuring the effect of abundance errors through Monte Carlo tests.
more »
« less
Chemodynamical Analysis of Metal-rich High-eccentricity Stars in the Milky Way's Disk
Abstract We present a chemodynamical analysis of 11,562 metal-rich, high-eccentricity halo-like main-sequence stars, which have been referred to as the Splash or Splashed Disk, selected from the Sloan Digital Sky Survey and Large Sky Area Multi-Object Fiber Spectroscopic Telescope. When divided into two groups, a low-[ α /Fe] population (LAP) and a high-[ α /Fe] population (HAP), based on kinematics and chemistry, we find that they exhibit very distinct properties, indicative of different origins. From a detailed analysis of their orbital inclinations, we suggest that the HAP arises from a large fraction (∼90%) of heated disk stars and a small fraction (∼10%) of in situ stars from a starburst population, likely induced by interaction of the Milky Way with the Gaia-Sausage/Enceladus (GSE) or another early merger. The LAP comprises about half accreted stars from the GSE and half formed by the GSE-induced starburst. Our findings further imply that the Splash stars in our sample originated from at least three different mechanisms: accretion, disk heating, and a merger-induced starburst.
more »
« less
- Award ID(s):
- 1927130
- PAR ID:
- 10464317
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 945
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 56
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We continue our series of papers on phase-space distributions of stars in the Milky Way based on photometrically derived metallicities and Gaia astrometry, with a focus on the halo−disk interface in the local volume. To exploit various photometric databases, we develop a method of empirically calibrating synthetic stellar spectra based on a comparison with observations of stellar sequences and individual stars in the Sloan Digital Sky Survey, the SkyMapper Sky Survey, and the Pan-STARRS1 surveys, overcoming band-specific corrections employed in our previous work. In addition, photometric zero-point corrections are derived to provide an internally consistent photometric system with a spatially uniform metallicity zero-point. Using our phase-space diagrams, we find a remarkably narrow sequence in the rotational velocity ( v ϕ ) versus metallicity ([Fe/H]) space for a sample of high proper-motion stars (>25 mas yr −1 ), which runs along Gaia Sausage/Enceladus (GSE) and the Splash substructures and is linked to the disk, spanning nearly 2 dex in [Fe/H]. Notably, a rapid increase of v ϕ from a nearly zero net rotation to ∼180 km s −1 in a narrow metallicity interval (−0.6 ≲ [Fe/H] ≲ −0.4) suggests that some of these stars emerged quickly on a short gas-depletion timescale. Through measurements of a scale height and length, we argue that these stars are distinct from those heated dynamically by mergers. This chain of high proper-motion stars provides additional support for recent discoveries suggesting that a starburst took place when the young Milky Way encountered the gas-rich GSE progenitor, which eventually led to the settling of metal-enriched gas onto the disk.more » « less
-
Abstract We find that the chemical abundances and dynamics of APOGEE and GALAH stars in the local stellar halo are inconsistent with a scenario in which the inner halo is primarily composed of debris from a single massive, ancient merger event, as has been proposed to explain the Gaia-Enceladus/Gaia Sausage (GSE) structure. The data contain trends of chemical composition with energy that are opposite to expectations for a single massive, ancient merger event, and multiple chemical evolution paths with distinct dynamics are present. We use a Bayesian Gaussian mixture model regression algorithm to characterize the local stellar halo, and find that the data are fit best by a model with four components. We interpret these components as the Virgo Radial Merger (VRM), Cronus, Nereus, and Thamnos; however, Nereus and Thamnos likely represent more than one accretion event because the chemical abundance distributions of their member stars contain many peaks. Although the Cronus and Thamnos components have different dynamics, their chemical abundances suggest they may be related. We show that the distinct low- and high-αhalo populations from Nissen & Schuster are explained by VRM and Cronus stars, as well as some in situ stars. Because the local stellar halo contains multiple substructures, different popular methods of selecting GSE stars will actually select different mixtures of these substructures, which may change the apparent chemodynamic properties of the selected stars. We also find that the Splash stars in the Solar region are shifted to highervϕand slightly lower [Fe/H] than previously reported.more » « less
-
Abstract We use halo dwarf stars with photometrically determined metallicities that are located within 2 kpc of the Sun to identify local halo substructure. The kinematic properties of these stars do not indicate a single, dominant radial merger event (RME). The retrograde Virgo Radial Merger (VRM) component has [Fe/H] = −1.7. A second, nonrotating RME component we name Nereus is identified with [Fe/H] = −2.1 and has similar energy to the VRM. We identify a possible third RME, which we name Cronus, that is corotating with the disk, has lower energy than the VRM, and has [Fe/H] = −1.2. We identify the Nyx Stream in the data. In addition to these substructures, we observe metal-poor halo stars ([Fe/H] ∼ −2.0 andσv∼ 180 km s−1) and a disk/Splash component with lower rotational velocity than the disk and lower metallicity than typically associated with the Splash. An additional excess of halo stars with low velocity and metallicity of [Fe/H] = −1.5 could be associated with the shell of a lower-energy RME or indicate that lower-energy halo stars have higher metallicity. Stars that comprise the “Gaia Sausage” velocity structure are a combination of the components identified in this work.more » « less
-
ABSTRACT The Milky Way underwent its last significant merger ten billion years ago, when the Gaia-Enceladus-Sausage (GES) was accreted. Accreted GES stars and progenitor stars born prior to the merger make up the bulk of the inner halo. Even though these two main populations of halo stars have similar durations of star formation prior to their merger, they differ in [α/Fe]-[Fe/H] space, with the GES population bending to lower [α/Fe] at a relatively low value of [Fe/H]. We use cosmological simulations of a ‘Milky Way’ to argue that the different tracks of the halo stars through the [α/Fe]-[Fe/H] plane are due to a difference in their star formation history and efficiency, with the lower mass GES having its low and constant star formation regulated by feedback whilst the higher mass main progenitor has a higher star formation rate prior to the merger. The lower star formation efficiency of GES leads to lower gas pollution levels, pushing [α/Fe]-[Fe/H] tracks to the left. In addition, the increasing star formation rate maintains a higher relative contribution of Type II SNe to Type Ia SNe for the main progenitor population that formed during the same time period, thus maintaining a relatively high [α/Fe]. Thus the different positions of the downturns in the [α/Fe]-[Fe/H] plane for the GES stars are not reflective of different star formation durations, but instead reflect different star formation efficiencies.more » « less