Clusters of galaxies trace the most non-linear peaks in the cosmic density field. The weak gravitational lensing of background galaxies by clusters can allow us to infer their masses. However, galaxies associated with the local environment of the cluster can also be intrinsically aligned due to the local tidal gradient, contaminating any cosmology derived from the lensing signal. We measure this intrinsic alignment in Dark Energy Survey (DES) Year 1 redMaPPer clusters. We find evidence of a non-zero mean radial alignment of galaxies within clusters between redshifts 0.1–0.7. We find a significant systematic in the measured ellipticities of cluster satellite galaxies that we attribute to the central galaxy flux and other intracluster light. We attempt to correct this signal, and fit a simple model for intrinsic alignment amplitude (AIA) to the measurement, finding AIA = 0.15 ± 0.04, when excluding data near the edge of the cluster. We find a significantly stronger alignment of the central galaxy with the cluster dark matter halo at low redshift and with higher richness and central galaxy absolute magnitude (proxies for cluster mass). This is an important demonstration of the ability of large photometric data sets like DES to provide direct constraints on the intrinsic alignment of galaxies within clusters. These measurements can inform improvements to small-scale modelling and simulation of the intrinsic alignment of galaxies to help improve the separation of the intrinsic alignment signal in weak lensing studies.
more » « less- Award ID(s):
- 2206563
- NSF-PAR ID:
- 10464645
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 526
- Issue:
- 1
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 323-336
- Size(s):
- p. 323-336
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract We perform a joint analysis of intrinsic alignments and cosmology using tomographic weak lensing, galaxy clustering, and galaxy–galaxy lensing measurements from Year 1 (Y1) of the Dark Energy Survey. We define early- and late-type subsamples, which are found to pass a series of systematics tests, including for spurious photometric redshift error and point spread function correlations. We analyse these split data alongside the fiducial mixed Y1 sample using a range of intrinsic alignment models. In a fiducial non-linear alignment model analysis, assuming a flat Λ cold dark matter cosmology, we find a significant difference in intrinsic alignment amplitude, with early-type galaxies favouring $A_\mathrm{IA} = 2.38^{+0.32}_{-0.31}$ and late-type galaxies consistent with no intrinsic alignments at $0.05^{+0.10}_{-0.09}$. The analysis is repeated using a number of extended model spaces, including a physically motivated model that includes both tidal torquing and tidal alignment mechanisms. In multiprobe likelihood chains in which cosmology, intrinsic alignments in both galaxy samples and all other relevant systematics are varied simultaneously, we find the tidal alignment and tidal torquing parts of the intrinsic alignment signal have amplitudes $A_1 = 2.66 ^{+0.67}_{-0.66}$, $A_2=-2.94^{+1.94}_{-1.83}$, respectively, for early-type galaxies and $A_1 = 0.62 ^{+0.41}_{-0.41}$, $A_2 = -2.26^{+1.30}_{-1.16}$ for late-type galaxies. In the full (mixed) Y1 sample the best constraints are $A_1 = 0.70 ^{+0.41}_{-0.38}$, $A_2 = -1.36 ^{+1.08}_{-1.41}$. For all galaxy splits and IA models considered, we report cosmological parameter constraints consistent with the results of the main DES Y1 cosmic shear and multiprobe cosmology papers.more » « less
-
ABSTRACT The intrinsic alignment (IA) of observed galaxy shapes with the underlying cosmic web is a source of contamination in weak lensing surveys. Sensitive methods to identify the IA signal will therefore need to be included in the upcoming weak lensing analysis pipelines. Hydrodynamical cosmological simulations allow us to directly measure the intrinsic ellipticities of galaxies, and thus provide a powerful approach to predict and understand the IA signal. Here we employ the novel, large-volume hydrodynamical simulation MTNG740, a product of the MillenniumTNG (MTNG) project, to study the IA of galaxies. We measure the projected correlation functions between the intrinsic shape/shear of galaxies and various tracers of large-scale structure, w+g, w+m, w++ over the radial range $r_{\rm p} \in [0.02 , 200]\, h^{-1}{\rm Mpc}$ and at redshifts z = 0.0, 0.5, and 1.0. We detect significant signal-to-noise IA signals with the density field for both elliptical and spiral galaxies. We also find significant intrinsic shear–shear correlations for ellipticals. We further examine correlations of the intrinsic shape of galaxies with the local tidal field. Here we find a significant IA signal for elliptical galaxies assuming a linear model. We also detect a weak IA signal for spiral galaxies under a quadratic tidal torquing model. Lastly, we measure the alignment between central galaxies and their host dark-matter haloes, finding small to moderate misalignments between their principal axes that decline with halo mass.
-
ABSTRACT Counts of galaxy clusters offer a high-precision probe of cosmology, but control of systematic errors will determine the accuracy of this measurement. Using Buzzard simulations, we quantify one such systematic, the triaxiality distribution of clusters identified with the redMaPPer optical cluster finding algorithm, which was used in the Dark Energy Survey Year-1 (DES Y1) cluster cosmology analysis. We test whether redMaPPer selection biases the clusters’ shape and orientation and find that it only biases orientation, preferentially selecting clusters with their major axes oriented along the line of sight. Modelling the richness–mass relation as log-linear, we find that the log-richness amplitude ln (A) is boosted from the lowest to highest orientation bin with a significance of 14σ, while the orientation dependence of the richness-mass slope and intrinsic scatter is minimal. We also find that the weak lensing shear-profile ratios of cluster-associated dark haloes in different orientation bins resemble a ‘bottleneck’ shape that can be quantified with a Cauchy function. We test the correlation of orientation with two other leading systematics in cluster cosmology – miscentering and projection – and find a null correlation. The resulting mass bias predicted from our templates confirms the DES Y1 finding that triaxiality is a leading source of bias in cluster cosmology. However, the richness-dependence of the bias confirms that triaxiality does not fully resolve the tension at low-richness between DES Y1 cluster cosmology and other probes. Our model can be used for quantifying the impact of triaxiality bias on cosmological constraints for upcoming weak lensing surveys of galaxy clusters.
-
ABSTRACT Cosmological constraints from current and upcoming galaxy cluster surveys are limited by the accuracy of cluster mass calibration. In particular, optically identified galaxy clusters are prone to selection effects that can bias the weak lensing mass calibration. We investigate the selection bias of the stacked cluster lensing signal associated with optically selected clusters, using clusters identified by the redMaPPer algorithm in the Buzzard simulations as a case study. We find that at a given cluster halo mass, the residuals of redMaPPer richness and weak lensing signal are positively correlated. As a result, for a given richness selection, the stacked lensing signal is biased high compared with what we would expect from the underlying halo mass probability distribution. The cluster lensing selection bias can thus lead to overestimated mean cluster mass and biased cosmology results. We show that the lensing selection bias exhibits a strong scale dependence and is approximately 20–60 per cent for ΔΣ at large scales. This selection bias largely originates from spurious member galaxies within ±20–60 $h^{-1}\, \rm Mpc$ along the line of sight, highlighting the importance of quantifying projection effects associated with the broad redshift distribution of member galaxies in photometric cluster surveys. While our results qualitatively agree with those in the literature, accurate quantitative modelling of the selection bias is needed to achieve the goals of cluster lensing cosmology and will require synthetic catalogues covering a wide range of galaxy–halo connection models.more » « less
-
ABSTRACT We develop a novel data-driven method for generating synthetic optical observations of galaxy clusters. In cluster weak lensing, the interplay between analysis choices and systematic effects related to source galaxy selection, shape measurement, and photometric redshift estimation can be best characterized in end-to-end tests going from mock observations to recovered cluster masses. To create such test scenarios, we measure and model the photometric properties of galaxy clusters and their sky environments from the Dark Energy Survey Year 3 (DES Y3) data in two bins of cluster richness $\lambda \in [30; 45)$, $\lambda \in [45; 60)$ and three bins in cluster redshift ($z\in [0.3; 0.35)$, $z\in [0.45; 0.5)$ and $z\in [0.6; 0.65)$. Using deep-field imaging data, we extrapolate galaxy populations beyond the limiting magnitude of DES Y3 and calculate the properties of cluster member galaxies via statistical background subtraction. We construct mock galaxy clusters as random draws from a distribution function, and render mock clusters and line-of-sight catalogues into synthetic images in the same format as actual survey observations. Synthetic galaxy clusters are generated from real observational data, and thus are independent from the assumptions inherent to cosmological simulations. The recipe can be straightforwardly modified to incorporate extra information, and correct for survey incompleteness. New realizations of synthetic clusters can be created at minimal cost, which will allow future analyses to generate the large number of images needed to characterize systematic uncertainties in cluster mass measurements.more » « less