skip to main content


This content will become publicly available on May 1, 2024

Title: Null, recursively starlike-equivalent decompositions shrink
Abstract A subset E of a metric space X is said to be starlike-equivalent if it has a neighbourhood which is mapped homeomorphically into $\mathbb{R}^n$ for some n , sending E to a starlike set. A subset $E\subset X$ is said to be recursively starlike-equivalent if it can be expressed as a finite nested union of closed subsets $\{E_i\}_{i=0}^{N+1}$ such that $E_{i}/E_{i+1}\subset X/E_{i+1}$ is starlike-equivalent for each i and $E_{N+1}$ is a point. A decomposition $\mathcal{D}$ of a metric space X is said to be recursively starlike-equivalent, if there exists $N\geq 0$ such that each element of $\mathcal{D}$ is recursively starlike-equivalent of filtration length N . We prove that any null, recursively starlike-equivalent decomposition $\mathcal{D}$ of a compact metric space X shrinks, that is, the quotient map $X\to X/\mathcal{D}$ is the limit of a sequence of homeomorphisms. This is a strong generalisation of results of Denman–Starbird and Freedman and is applicable to the proof of Freedman’s celebrated disc embedding theorem. The latter leads to a multitude of foundational results for topological 4-manifolds, including the four-dimensional Poincaré conjecture.  more » « less
Award ID(s):
1933019
NSF-PAR ID:
10464745
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Glasgow Mathematical Journal
Volume:
65
Issue:
2
ISSN:
0017-0895
Page Range / eLocation ID:
328 to 336
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper studies the structure and stability of boundaries in noncollapsed $${{\,\mathrm{RCD}\,}}(K,N)$$ RCD ( K , N ) spaces, that is, metric-measure spaces $$(X,{\mathsf {d}},{\mathscr {H}}^N)$$ ( X , d , H N ) with Ricci curvature bounded below. Our main structural result is that the boundary $$\partial X$$ ∂ X is homeomorphic to a manifold away from a set of codimension 2, and is $$N-1$$ N - 1 rectifiable. Along the way, we show effective measure bounds on the boundary and its tubular neighborhoods. These results are new even for Gromov–Hausdorff limits $$(M_i^N,{\mathsf {d}}_{g_i},p_i) \rightarrow (X,{\mathsf {d}},p)$$ ( M i N , d g i , p i ) → ( X , d , p ) of smooth manifolds with boundary, and require new techniques beyond those needed to prove the analogous statements for the regular set, in particular when it comes to the manifold structure of the boundary $$\partial X$$ ∂ X . The key local result is an $$\varepsilon $$ ε -regularity theorem, which tells us that if a ball $$B_{2}(p)\subset X$$ B 2 ( p ) ⊂ X is sufficiently close to a half space $$B_{2}(0)\subset {\mathbb {R}}^N_+$$ B 2 ( 0 ) ⊂ R + N in the Gromov–Hausdorff sense, then $$B_1(p)$$ B 1 ( p ) is biHölder to an open set of $${\mathbb {R}}^N_+$$ R + N . In particular, $$\partial X$$ ∂ X is itself homeomorphic to $$B_1(0^{N-1})$$ B 1 ( 0 N - 1 ) near $$B_1(p)$$ B 1 ( p ) . Further, the boundary $$\partial X$$ ∂ X is $$N-1$$ N - 1 rectifiable and the boundary measure "Equation missing" is Ahlfors regular on $$B_1(p)$$ B 1 ( p ) with volume close to the Euclidean volume. Our second collection of results involve the stability of the boundary with respect to noncollapsed mGH convergence $$X_i\rightarrow X$$ X i → X . Specifically, we show a boundary volume convergence which tells us that the $$N-1$$ N - 1 Hausdorff measures on the boundaries converge "Equation missing" to the limit Hausdorff measure on $$\partial X$$ ∂ X . We will see that a consequence of this is that if the $$X_i$$ X i are boundary free then so is X . 
    more » « less
  2. Abstract

    We continue the program of proving circuit lower bounds via circuit satisfiability algorithms. So far, this program has yielded several concrete results, proving that functions in$\mathsf {Quasi}\text {-}\mathsf {NP} = \mathsf {NTIME}[n^{(\log n)^{O(1)}}]$Quasi-NP=NTIME[n(logn)O(1)]and other complexity classes do not have small circuits (in the worst case and/or on average) from various circuit classes$\mathcal { C}$C, by showing that$\mathcal { C}$Cadmits non-trivial satisfiability and/or#SAT algorithms which beat exhaustive search by a minor amount. In this paper, we present a new strong lower bound consequence of having a non-trivial#SAT algorithm for a circuit class${\mathcal C}$C. Say that a symmetric Boolean functionf(x1,…,xn) issparseif it outputs 1 onO(1) values of${\sum }_{i} x_{i}$ixi. We show that for every sparsef, and for all “typical”$\mathcal { C}$C, faster#SAT algorithms for$\mathcal { C}$Ccircuits imply lower bounds against the circuit class$f \circ \mathcal { C}$fC, which may bestrongerthan$\mathcal { C}$Citself. In particular:

    #SAT algorithms fornk-size$\mathcal { C}$C-circuits running in 2n/nktime (for allk) implyNEXPdoes not have$(f \circ \mathcal { C})$(fC)-circuits of polynomial size.

    #SAT algorithms for$2^{n^{{\varepsilon }}}$2nε-size$\mathcal { C}$C-circuits running in$2^{n-n^{{\varepsilon }}}$2nnεtime (for someε> 0) implyQuasi-NPdoes not have$(f \circ \mathcal { C})$(fC)-circuits of polynomial size.

    Applying#SAT algorithms from the literature, one immediate corollary of our results is thatQuasi-NPdoes not haveEMAJACC0THRcircuits of polynomial size, whereEMAJis the “exact majority” function, improving previous lower bounds againstACC0[Williams JACM’14] andACC0THR[Williams STOC’14], [Murray-Williams STOC’18]. This is the first nontrivial lower bound against such a circuit class.

     
    more » « less
  3. Embedding properties of network realizations of dissipative reduced order models Jörn Zimmerling, Mikhail Zaslavsky,Rob Remis, Shasri Moskow, Alexander Mamonov, Murthy Guddati, Vladimir Druskin, and Liliana Borcea Mathematical Sciences Department, Worcester Polytechnic Institute https://www.wpi.edu/people/vdruskin Abstract Realizations of reduced order models of passive SISO or MIMO LTI problems can be transformed to tridiagonal and block-tridiagonal forms, respectively, via dierent modications of the Lanczos algorithm. Generally, such realizations can be interpreted as ladder resistor-capacitor-inductor (RCL) networks. They gave rise to network syntheses in the rst half of the 20th century that was at the base of modern electronics design and consecutively to MOR that tremendously impacted many areas of engineering (electrical, mechanical, aerospace, etc.) by enabling ecient compression of the underlining dynamical systems. In his seminal 1950s works Krein realized that in addition to their compressing properties, network realizations can be used to embed the data back into the state space of the underlying continuum problems. In more recent works of the authors Krein's ideas gave rise to so-called nite-dierence Gaussian quadrature rules (FDGQR), allowing to approximately map the ROM state-space representation to its full order continuum counterpart on a judicially chosen grid. Thus, the state variables can be accessed directly from the transfer function without solving the full problem and even explicit knowledge of the PDE coecients in the interior, i.e., the FDGQR directly learns" the problem from its transfer function. This embedding property found applications in PDE solvers, inverse problems and unsupervised machine learning. Here we show a generalization of this approach to dissipative PDE problems, e.g., electromagnetic and acoustic wave propagation in lossy dispersive media. Potential applications include solution of inverse scattering problems in dispersive media, such as seismic exploration, radars and sonars. To x the idea, we consider a passive irreducible SISO ROM fn(s) = Xn j=1 yi s + σj , (62) assuming that all complex terms in (62) come in conjugate pairs. We will seek ladder realization of (62) as rjuj + vj − vj−1 = −shˆjuj , uj+1 − uj + ˆrj vj = −shj vj , (63) for j = 0, . . . , n with boundary conditions un+1 = 0, v1 = −1, and 4n real parameters hi, hˆi, ri and rˆi, i = 1, . . . , n, that can be considered, respectively, as the equivalent discrete inductances, capacitors and also primary and dual conductors. Alternatively, they can be viewed as respectively masses, spring stiness, primary and dual dampers of a mechanical string. Reordering variables would bring (63) into tridiagonal form, so from the spectral measure given by (62 ) the coecients of (63) can be obtained via a non-symmetric Lanczos algorithm written in J-symmetric form and fn(s) can be equivalently computed as fn(s) = u1. The cases considered in the original FDGQR correspond to either (i) real y, θ or (ii) real y and imaginary θ. Both cases are covered by the Stieltjes theorem, that yields in case (i) real positive h, hˆ and trivial r, rˆ, and in case (ii) real positive h,r and trivial hˆ,rˆ. This result allowed us a simple interpretation of (62) as the staggered nite-dierence approximation of the underlying PDE problem [2]. For PDEs in more than one variables (including topologically rich data-manifolds), a nite-dierence interpretation is obtained via a MIMO extensions in block form, e.g., [4, 3]. The main diculty of extending this approach to general passive problems is that the Stieltjes theory is no longer applicable. Moreover, the tridiagonal realization of a passive ROM transfer function (62) via the ladder network (63) cannot always be obtained in port-Hamiltonian form, i.e., the equivalent primary and dual conductors may change sign [1]. 100 Embedding of the Stieltjes problems, e.g., the case (i) was done by mapping h and hˆ into values of acoustic (or electromagnetic) impedance at grid cells, that required a special coordinate stretching (known as travel time coordinate transform) for continuous problems. Likewise, to circumvent possible non-positivity of conductors for the non-Stieltjes case, we introduce an additional complex s-dependent coordinate stretching, vanishing as s → ∞ [1]. This stretching applied in the discrete setting induces a diagonal factorization, removes oscillating coecients, and leads to an accurate embedding for moderate variations of the coecients of the continuum problems, i.e., it maps discrete coecients onto the values of their continuum counterparts. Not only does this embedding yields an approximate linear algebraic algorithm for the solution of the inverse problems for dissipative PDEs, it also leads to new insight into the properties of their ROM realizations. We will also discuss another approach to embedding, based on Krein-Nudelman theory [5], that results in special data-driven adaptive grids. References [1] Borcea, Liliana and Druskin, Vladimir and Zimmerling, Jörn, A reduced order model approach to inverse scattering in lossy layered media, Journal of Scientic Computing, V. 89, N1, pp. 136,2021 [2] Druskin, Vladimir and Knizhnerman, Leonid, Gaussian spectral rules for the three-point second dierences: I. A two-point positive denite problem in a semi-innite domain, SIAM Journal on Numerical Analysis, V. 37, N 2, pp.403422, 1999 [3] Druskin, Vladimir and Mamonov, Alexander V and Zaslavsky, Mikhail, Distance preserving model order reduction of graph-Laplacians and cluster analysis, Druskin, Vladimir and Mamonov, Alexander V and Zaslavsky, Mikhail, Journal of Scientic Computing, V. 90, N 1, pp 130, 2022 [4] Druskin, Vladimir and Moskow, Shari and Zaslavsky, Mikhail LippmannSchwingerLanczos algorithm for inverse scattering problems, Inverse Problems, V. 37, N. 7, 2021, [5] Mark Adolfovich Nudelman The Krein String and Characteristic Functions of Maximal Dissipative Operators, Journal of Mathematical Sciences, 2004, V 124, pp 49184934 Go back to Plenary Speakers Go back to Speakers Go back 
    more » « less
  4. Abstract The 4 ⁢ N {4N} -carpets are a class of infinitely ramified self-similar fractals with a large group of symmetries. For a 4 ⁢ N {4N} -carpet F , let { F n } n ≥ 0 {\{F_{n}\}_{n\geq 0}} be the natural decreasing sequence of compact pre-fractal approximations with ⋂ n F n = F {\bigcap_{n}F_{n}=F} . On each F n {F_{n}} , let ℰ ⁢ ( u , v ) = ∫ F N ∇ ⁡ u ⋅ ∇ ⁡ v ⁢ d ⁢ x {\mathcal{E}(u,v)=\int_{F_{N}}\nabla u\cdot\nabla v\,dx} be the classical Dirichlet form and u n {u_{n}} be the unique harmonic function on F n {F_{n}} satisfying a mixed boundary value problem corresponding to assigning a constant potential between two specific subsets of the boundary. Using a method introduced by [M. T. Barlow and R. F. Bass,On the resistance of the Sierpiński carpet, Proc. Roy. Soc. Lond. Ser. A 431 (1990), no. 1882, 345–360], we prove a resistance estimate of the following form: there is ρ = ρ ⁢ ( N ) > 1 {\rho=\rho(N)>1} such that ℰ ⁢ ( u n , u n ) ⁢ ρ n {\mathcal{E}(u_{n},u_{n})\rho^{n}} is bounded above and below by constants independent of n . Such estimates have implications for the existence and scaling properties of Brownian motion on F . 
    more » « less
  5. Let(R,m)(R,\mathfrak {m})be a Noetherian local ring of dimensiond≥<#comment/>2d\geq 2. We prove that ife(R^<#comment/>red)>1e(\widehat {R}_{red})>1, then the classical Lech’s inequality can be improved uniformly for allm\mathfrak {m}-primary ideals, that is, there existsε<#comment/>>0\varepsilon >0such thate(I)≤<#comment/>d!(e(R)−<#comment/>ε<#comment/>)ℓ<#comment/>(R/I)e(I)\leq d!(e(R)-\varepsilon )\ell (R/I)for allm\mathfrak {m}-primary idealsI⊆<#comment/>RI\subseteq R. This answers a question raised by Huneke, Ma, Quy, and Smirnov [Adv. Math. 372 (2020), pp. 107296, 33]. We also obtain partial results towards improvements of Lech’s inequality when we fix the number of generators ofII.

     
    more » « less