skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Part Aware Contrastive Learning for Self-Supervised Action Recognition
In recent years, remarkable results have been achieved in self-supervised action recognition using skeleton sequences with contrastive learning. It has been observed that the semantic distinction of human action features is often represented by local body parts, such as legs or hands, which are advantageous for skeleton-based action recognition. This paper proposes an attention-based contrastive learning framework for skeleton representation learning, called SkeAttnCLR, which integrates local similarity and global features for skeleton-based action representations. To achieve this, a multi-head attention mask module is employed to learn the soft attention mask features from the skeletons, suppressing non-salient local features while accentuating local salient features, thereby bringing similar local features closer in the feature space. Additionally, ample contrastive pairs are generated by expanding contrastive pairs based on salient and non-salient features with global features, which guide the network to learn the semantic representations of the entire skeleton. Therefore, with the attention mask mechanism, SkeAttnCLR learns local features under different data augmentation views. The experiment results demonstrate that the inclusion of local feature similarity significantly enhances skeleton-based action representation. Our proposed SkeAttnCLR outperforms state-of-the-art methods on NTURGB+D, NTU120-RGB+D, and PKU-MMD datasets. The code and settings are available at this repository: https://github.com/GitHubOfHyl97/SkeAttnCLR.  more » « less
Award ID(s):
1840080
PAR ID:
10464796
Author(s) / Creator(s):
Date Published:
Journal Name:
THE 32nd INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Human skeleton-based action recognition offers a valuable means to understand the intricacies of human behavior because it can handle the complex relationships between physical constraints and intention. Although several studies have focused on encoding a skeleton, less attention has been paid to embed this information into the latent representations of human action. InfoGCN proposes a learning framework for action recognition combining a novel learning objective and an encoding method. First, we design an information bottleneck-based learning objective to guide the model to learn informative but compact latent representations. To provide discriminative information for classifying action, we introduce attention-based graph convolution that captures the context-dependent intrinsic topology of human action. In addition, we present a multi-modal representation of the skeleton using the relative position of joints, designed to provide complementary spatial information for joints. InfoGcn 1 1 Code is available at github.com/stnoahl/infogcn surpasses the known state-of-the-art on multiple skeleton-based action recognition benchmarks with the accuracy of 93.0% on NTU RGB+D 60 cross-subject split, 89.8% on NTU RGB+D 120 cross-subject split, and 97.0% on NW-UCLA. 
    more » « less
  2. Recently, transformers have demonstrated great potential for modeling long-term dependencies from skeleton sequences and thereby gained ever-increasing attention in skeleton action recognition. However, the existing transformer-based approaches heavily rely on the naive attention mechanism for capturing the spatiotemporal features, which falls short in learning discriminative representations that exhibit similar motion patterns. To address this challenge, we introduce the Frequency-aware Mixed Transformer (FreqMixFormer), specifically designed for recognizing similar skeletal actions with subtle discriminative motions. First, we introduce a frequency-aware attention module to unweave skeleton frequency representations by embedding joint features into frequency attention maps, aiming to distinguish the discriminative movements based on their frequency coefficients. Subsequently, we develop a mixed transformer architecture to incorporate spatial features with frequency features to model the comprehensive frequency-spatial patterns. Additionally, a temporal transformer is proposed to extract the global correlations across frames. Extensive experiments show that FreqMiXFormer outperforms SOTA on 3 popular skeleton action recognition datasets, including NTU RGB+D, NTU RGB+D120, and NW-UCLA datasets. Our project is publicly available at: https://github.com/wenhanwu95/FreqMixFormer. 
    more » « less
  3. Unsupervised learning has recently made exceptional progress because of the development of more effective contrastive learning methods. However, CNNs are prone to depend on low-level features that humans deem non-semantic. This dependency has been conjectured to induce a lack of robustness to image perturbations or domain shift. In this paper, we show that by generating carefully designed negative samples, contrastive learning can learn more robust representations with less dependence on such features. Contrastive learning utilizes positive pairs which preserve semantic information while perturbing superficial features in the training images. Similarly, we propose to generate negative samples in a reversed way, where only the superfluous instead of the semantic features are preserved. We develop two methods, texture-based and patch-based augmentations, to generate negative samples. These samples achieve better generalization, especially under out-of-domain settings. We also analyze our method and the generated texture-based samples, showing that texture features are indispensable in classifying particular ImageNet classes and especially finer classes. We also show that the model bias between texture and shape features favors them differently under different test settings. 
    more » « less
  4. Supervised learning of skeleton sequence encoders for action recognition has received significant attention in recent times. However, learning such encoders without labels continues to be a challenging problem. While prior works have shown promising results by applying contrastive learning to pose sequences, the quality of the learned representations is often observed to be closely tied to data augmentations that are used to craft the positives. However, augmenting pose sequences is a difficult task as the geometric constraints among the skeleton joints need to be enforced to make the augmentations realistic for that action. In this work, we propose a new contrastive learning approach to train models for skeleton-based action recognition without labels. Our key contribution is a simple module, HaLP – to Hallucinate Latent Positives for contrastive learning. Specifically, HaLP explores the latent space of poses in suitable directions to generate new positives. To this end, we present a novel optimization formulation to solve for the synthetic positives with an explicit control on their hardness. We propose approximations to the objective, making them solvable in closed form with minimal overhead. We show via experiments that using these generated positives within a standard contrastive learning framework leads to consistent improvements across benchmarks such as NTU-60, NTU- 120, and PKU-II on tasks like linear evaluation, transfer learning, and kNN evaluation. Our code can be found at https://github.com/anshulbshah/HaLP. 
    more » « less
  5. Egocentric and exocentric perspectives of human action differ significantly, yet overcoming this extreme viewpoint gap is critical in augmented reality and robotics. We propose VIEWPOINTROSETTA, an approach that unlocks large-scale unpaired ego and exo video data to learn clip-level viewpoint-invariant video representations. Our framework introduces (1) a diffusion-based Rosetta Stone Translator (RST), which, leveraging a moderate amount of synchronized multi-view videos, serves as a translator in feature space to decipher the alignment between unpaired ego and exo data, and (2) a dual encoder that aligns unpaired data representations through contrastive learning with RST-based synthetic feature augmentation and soft alignment. To evaluate the learned features in a standardized setting, we construct a new cross-view benchmark using Ego-Exo4D, covering cross-view retrieval, action recognition, and skill assessment tasks. Our framework demonstrates superior cross-view understanding compared to previous view-invariant learning and ego video representation learning approaches, and opens the door to bringing vast amounts of traditional third-person video to bear on the more nascent first-person setting. 
    more » « less