skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Direct Aniline Formation with Benzene and Hydroxylamine
A single-step method for aniline formation was examined. Using a vanadate catalyst with an iron oxide co-catalyst and hydroxylamine hydrochloride as the amine source, an up to 90% yield of aniline was obtained with high selectivity. Further study showed that the overall reaction was pseudo-second order in terms of hydroxylamine concentration. Regioselective H-D exchange experiments suggest that the C-N bond formation step occurs via an irreversible electrophilic pathway. Based on all of the key observations, a mechanism is proposed.  more » « less
Award ID(s):
1725028
PAR ID:
10464838
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Chemistry
Volume:
5
Issue:
4
ISSN:
2624-8549
Page Range / eLocation ID:
2056 to 2067
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Herein we report the MoO2Dipic promoted sulfonation of alkenes using N−Ts‐hydroxylamine as the quantitative source of Ts. The reaction works with high yields and stereoselectivities for styrenes with a wide variety of substitution patterns. A novel atom transfer radical addition mechanism involving the formation of molybdooxaziridine complex1as the active catalyst, difunctionalization withTs‐NO, followed by oxidation, and then elimination as the rate‐determining‐step for the formation of vinylsulfone3has been proposed. Initial kinetic and mechanistic data indicates the formation ofTs‐NOand provides evidence for the proposed mechanism. 
    more » « less
  2. The Ru–H complex (PCy 3 ) 2 (CO)RuHCl (1) was found to be a highly effective catalyst for the three-component deaminative coupling reaction of anilines with aldehydes and allylamines to form 2,3-disubstituted quinoline products. The analogous coupling reaction of anilines with aldehydes and cyclic enamines led to the selective formation of the tricyclic quinoline derivatives. The reaction profile study showed that the imine is initially formed from the dehydrative coupling of aniline and aldehyde, and it undergoes the deaminative coupling and annulation reaction with amine substrate to form the quinoline product. The catalytic coupling method provides a step-efficient synthesis of 2,3-disubstituted quinoline derivatives without employing any reactive reagents or forming wasteful byproducts. 
    more » « less
  3. null (Ed.)
    An effective catalyst has been developed for the three-component reaction of aldehydes, anilines and phosphites in an asymmetric catalytic Kabachnik–Fields reaction to give α-aminophosphonates. A catalyst was sought that would give high asymmetric inductions for aromatic and, and more particularly, for aliphatic aldehydes since there has not previously been an effective catalyst developed for this class of aldehydes. The optimal catalyst is prepared from three equivalents of the 7,7′-di- t -butylVANOL ligand, one equivalent of N -methylimidazole and one equivalent of zirconium tetraisopropoxide. This catalyst was most efficient in the presence of 10 mol% benzoic acid. Optimal conditions for aryl aldehydes required the use of 3,5-diisopropyl-2-hydroxyaniline and gave the aryl α-aminophosphonates in up to 96% yield and 98% ee over 11 different aryl aldehydes. The best aniline for aliphatic aldehydes was found to be 3- t -butyl-2-hydroxyaniline and gave the corresponding phosphonates in up to 83% yield and 97% ee over 18 examples. The asymmetric inductions for aliphatic aldehydes were comparable with those for aromatic aldehydes with a mean induction of 90% ee for the former and 91% ee for the latter. The best method for the liberation of the free amine from the aniline substituted α-aminophosphonates involved oxidation with N -iodosuccinimide. 
    more » « less
  4. Abstract A series of molecular Mn catalysts featuring aniline groups in the second‐coordination sphere has been developed for electrochemical and photochemical CO2reduction. The arylamine moieties were installed at the 6 position of 2,2’‐bipyridine (bpy) to generate a family of isomers in which the primary amine is located at theortho‐(1‐Mn),meta‐(2‐Mn), orpara‐site (3‐Mn) of the aniline ring. The proximity of the second‐sphere functionality to the active site is a critical factor in determining catalytic performance. Catalyst1‐Mn, possessing the shortest distance between the amine and the active site, significantly outperformed the rest of the series and exhibited a 9‐fold improvement in turnover frequency relative to parent catalyst Mn(bpy)(CO)3Br (901 vs. 102 s−1, respectively) at 150 mV lower overpotential. The electrocatalysts operated with high faradaic efficiencies (≥70 %) for CO evolution using trifluoroethanol as a proton source. Notably, under photocatalytic conditions, a concentration‐dependent shift in product selectivity from CO (at high [catalyst]) to HCO2H (at low [catalyst]) was observed with turnover numbers up to 4760 for formic acid and high selectivities for reduced carbon products. 
    more » « less
  5. Ionic liquids are an interesting class of materials that have recently been utilized as chemotherapeutic agents in cancer therapy. Aniline blue, a commonly used biological staining agent, was used as a counter ion to trihexyltetradecylphosphonium, a known cytotoxic cation. A facile, single step ion exchange reaction was performed to synthesize a fluorescent ionic liquid, trihexyltetradecylphosphonium aniline blue. Aqueous nanoparticles of this hydrophobic ionic liquid were prepared using reprecipitationmethod. The newly synthesized ionic liquid and subsequent nanoparticles were characterized using various spectroscopic techniques. Transmission electron microscopy and zeta potential measurements were performed to characterize the nanoparticles’ morphology and surface charge. The photophysical properties of the nanoparticles and the parent aniline blue compound were studied using absorption and fluorescence spectroscopy. Cell viability studies were conducted to investigate the cytotoxicity of the newly developed trihexyltetradecylphosphonium aniline blue nanoparticles in human breast epithelial cancer cell line (MCF-7) and its corresponding normal epithelial cell line (MCF-10A) in vitro . The results revealed that the synthesized ionic nanomedicines were more cytotoxic (lower IC 50 ) than the parent chemotherapeutic compound in MCF-7 cells. Nanoparticles of the synthesized ionic liquid were also shown to be more stable in both aqueous and cellular media and more selective than parent compounds towards cancer cells. 
    more » « less