skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Protection of Network Security Selector Secrecy in Outsourced Network Testing
With the emergence and fast development of cloud computing and outsourced services, more and more companies start to use managed security service providers (MSSP) as their security service team. This approach can save the budget on maintaining its own security teams and depend on professional security persons to protect the company infrastructures and intellectual property. However, this approach also gives the MSSP opportunities to honor only a part of the security service level agreement. To pre- vent this from happening, researchers propose to use outsourced network testing to verify the execution of the security policies. During this procedure, the end customer has to design network testing traffic and provide it to the testers. Since the testing traffic is designed based on the security rules and selectors, external testers could derive the customer network security setup, and conduct subsequent attacks based on the learned knowledge. To protect the network security configuration secrecy in outsourced testing, in this paper we propose different methods to hide the accurate information. For Regex-based security selectors, we propose to introduce fake testing traffic to confuse the testers. For exact match and range based selectors, we propose to use NAT VM to hide the accurate information. We conduct simulation to show the protection effectiveness under different scenarios. We also discuss the advantages of our approaches and the potential challenges.  more » « less
Award ID(s):
1840080
PAR ID:
10465006
Author(s) / Creator(s):
Date Published:
Journal Name:
The 32nd International Conference on Computer Communications and Networks (ICCCN 2023)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A key dimension of reproducibility in testbeds is stable performance that scales in regular and predictable ways in accordance with declarative specifications for virtual resources. We contend that reproducibility is crucial for elastic performance control in live experiments, in which testbed tenants (slices) provide services for real user traffic that varies over time. This paper gives an overview of ExoPlex, a framework for deploying network service providers (NSPs) as a basis for live inter-domain networking experiments on the ExoGENI testbed. As a motivating example, we show how to use ExoPlex to implement a virtual software-defined exchange (vSDX) as a tenant NSP. The vSDX implements security-managed interconnection of customer IP networks that peer with it via direct L2 links stitched dynamically into its slice. An elastic controller outside of the vSDX slice provisions network links and computing capacity for a scalable monitoring fabric within the tenant vSDX slice. The vSDX checks compliance of traffic flows with customer-specified interconnection policies, and blocks traffic from senders that trigger configured rules for intrusion detection in Bro security monitors. We present initial results showing the effect of resource provisioning on Bro performance within the vSDX. 
    more » « less
  2. Network security devices intercept, analyze and act on the traffic moving through the network to enforce security policies. They can have adverse impact on the performance, functionality, and privacy provided by the network. To address this issue, we propose a new approach to network security based on the concept of short-term on-demand security exceptions. The basic idea is to bring network providers and (trusted) users together by (1) implementing coarse-grained security policies in the traditional way using conventional in-band security approaches, and (2) handling special cases policy exceptions in the control plane using user/application-supplied information. By divulging their intent to network providers, trusted users can receive better service. By allowing security exceptions, network providers can focus inspections on general (untrusted) traffic. We describe the design of an on-demand security exception mechanism and demonstrate its utility using a prototype implementation that enables high-speed big-data transfer across campus networks. Our experiments show that the security exception mechanism can improve the throughput of flows by trusted users significantly. 
    more » « less
  3. Recently, much attention has been devoted to the development of generative network traces and their potential use in supplementing real-world data for a variety of data-driven networking tasks. Yet, the utility of existing synthetic traffic approaches are limited by their low fidelity: low feature granularity, insufficient adherence to task constraints, and subpar class coverage. As effective network tasks are increasingly reliant on raw packet captures, we advocate for a paradigm shift from coarse-grained to fine-grained traffic generation compliant to constraints. We explore this path employing controllable diffusion-based methods. Our preliminary results suggest its effectiveness in generating realistic and fine-grained network traces that mirror the complexity and variety of real network traffic required for accurate service recognition. We further outline the challenges and opportunities of this approach, and discuss a research agenda towards text-to-traffic synthesis. 
    more » « less
  4. With the increase in data transmissions and network traffic over the years, there has been an increase in concerns about protecting network data and information from snooping. With this concern, encryptions are incorporated into network protocols. From wireless protocols to web and phone applications, systems that handle the going and coming of data on the network have applied different kinds of encryptions to protect the confidentiality and integrity of their data transfers. The addition of encryptions poses a new question. What will be observed from encrypted traffic data? This work in progress research delivers an in-depth overview of the ZigBee protocol and analyzes encrypted ZigBee traffic on the ZigBee network. From our analysis, we developed possible strategies for ZigBee traffic analysis. Adopting the proposed strategy makes it possible to detect encrypted traffic activities and patterns of use on the ZigBee network. To the best of our knowledge, this is the first work that tries to understand encrypted ZigBee traffic. By understanding what can be gained from encrypted traffic, this work will benefit the security and privacy of the ZigBee protocol. 
    more » « less
  5. In Location-Based Services (LBS), users are required to disclose their precise location information to query a service provider. An untrusted service provider can abuse those queries to infer sensitive information on a user through spatio-temporal and historical data analyses. Depicting the drawbacks of existing privacy-preserving approaches in LBS, we propose a user-centric obfuscation approach, called KLAP, based on the three fundamental obfuscation requirements: k number of locations, l-diversity, and privacy area preservation. Considering user's sensitivity to different locations and utilizing Real-Time Traffic Information (RTTI), KLAP generates a convex Concealing Region (CR) to hide user's location such that the locations, forming the CR, resemble similar sensitivity and are resilient against a wide range of inferences in spatio-temporal domain. For the first time, a novel CR pruning technique is proposed to significantly improve the delay between successive CR submissions. We carry out an experiment with a real dataset to show its effectiveness for sporadic, frequent, and continuous service use cases. 
    more » « less