skip to main content


Title: Persistent Homology as a Heterogeneity Metric for Predicting Pore Size Change in Dissolving Carbonates
Abstract

Accurate prediction of physical alterations in carbonate reservoirs under dissolution is critical for development of subsurface energy technologies. The impact of mineral dissolution on flow characteristics depends on the connectivity and tortuosity of the pore network. Persistent homology is a tool from algebraic topology that describes the size and connectivity of topological features. When applied to 3D X‐ray computed tomography (XCT) imagery of rock cores, it provides a novel metric of pore network heterogeneity. Prior works have demonstrated the efficacy of persistent homology in predicting flow properties in numerical simulations of flow through porous media. Its ability to combine size, spatial distribution, and connectivity information make it a promising tool for understanding reactive transport in complex pore networks, yet limited work has been done to apply persistence analysis to experimental studies on natural rocks. In this study, three limestone cores were imaged by XCT before and after acid‐driven dissolution flow‐through experiments. Each XCT scan was analyzed using persistent homology. In all three rocks, permeability increase was driven by the growth of large, connected pore bodies. The two most homogenous samples saw an increased effect nearer to the flow inlet, suggesting emerging preferential flow paths as the reaction front progresses. The most heterogeneous sample showed an increase in along‐core homogeneity during reaction. Variability of persistence showed moderate positive correlation with pore body size increase. Persistence heterogeneity analysis could be used to anticipate where greatest pore size evolution may occur in a reservoir targeted for subsurface development, improving confidence in project viability.

 
more » « less
NSF-PAR ID:
10465056
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
59
Issue:
9
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Target subsurface reservoirs for emerging low‐carbon energy technologies and geologic carbon sequestration typically have low permeability and thus rely heavily on fluid transport through natural and induced fracture networks. Sustainable development of these systems requires deeper understanding of how geochemically mediated deformation impacts fracture microstructure and permeability evolution, particularly with respect to geochemical reactions between pore fluids and the host rock. In this work, a series of triaxial direct shear experiments was designed to evaluate how fractures generated at subsurface conditions respond to penetration of reactive fluids with a focus on the role of mineral precipitation. Calcite‐rich shale cores were directly sheared under 3.5 MPa confining pressure using BaCl2‐rich solutions as a working fluid. Experiments were conducted within an X‐ray computed tomography (xCT) scanner to capture 4‐D evolution of fracture geometry and precipitate growth. Three shear tests evidenced nonuniform precipitation of barium carbonates (BaCO3) along through‐going fractures, where the extent of precipitation increased with increasing calcite content. Precipitates were strongly localized within fracture networks due to mineral, geochemical, and structural heterogeneities and generally concentrated in smaller apertures where rock:water ratios were highest. The combination of elevated fluid saturation and reactive surface area created in freshly activated fractures drove near‐immediate mineral precipitation that led to an 80% permeability reduction and significant flow obstruction in the most reactive core. While most previous studies have focused on mixing‐induced precipitation, this work demonstrates that fluid–rock interactions can trigger precipitation‐induced permeability alterations that can initiate or mitigate risks associated with subsurface energy systems.

     
    more » « less
  2. Abstract

    The flow‐induced dissolution of porous rocks governs many important subsurface processes and applications. Solute mixing, which determines pore‐scale concentration fields, is a key process that affects dissolution. Despite its importance, the effects of pore‐scale mixing on large‐scale dissolution patterns have not been investigated. Here, we use a pore network model to elucidate the mixing effects on macroscopic dissolution patterns and solute transport. We consider two mixing rules at pore intersections that represent two end members in terms of the mixing intensity. We observe that the mixing effect on dissolution is the strongest at moderate Damköhler number, when the reactive and advective time scales are comparable. This is the regime where wormholes spontaneously appear. Incomplete mixing is shown to enhance flow focusing at the tips of the dissolution channels, which results in thinner wormholes and shorter breakthrough times. These effects on passive solute transport are evident independent of initial network heterogeneity.

     
    more » « less
  3. Abstract

    Nitrous oxide (N2O) is a potent ozone‐depleting greenhouse gas produced by incomplete denitrification. Recent works on riverine N2O emissions focus mainly on contributions from in‐channel, benthic, and fluvial hyporheic environments under assumptions of steady‐state conditions and homogeneous sediment hydraulic conductivity (K). However, riparian floodplains are also a potentially important N2O source characterized by complex sediment heterogeneity and dynamic surface and groundwater interactions. We use numerical flow and reactive transport models to investigate the influence of complex sedimentary architecture and high‐flow events (e.g., storms) on N2O production. We interpret the correlation between flow and solute fields with the flow topological Okubo‐Weiss metric (OW) and the scalar dissipation rate weighted by soil organic matter (OM) fraction and soil saturation. We model a heterogeneous riparian floodplain based on field observations from the Theis Environmental Monitoring and Modeling Site, Ohio, USA. N2O production is greatest within intermediate‐Ksediments (e.g., sands) where denitrification rates are highest, and emissions increase by more than an order of magnitude during storms. Sensitivity analysis reveals that the denitrification rate is most influential for N2O flux, accounting for nearly 46% of the variance in production rates. Denitrification rates adapt to spatial changes in the flow topology (measured by OW) related to sediment heterogeneity and are strongly influenced by subsurface mixing dynamics. Mixing is greatest in shear strain‐dominated regions, while vorticity promotes OM dissolution and prolongs residence times. Accurate lithologic representation is imperative for characterizing subsurface N2O production dynamics, especially given growing concern regarding climate change driven hydrologic changes within watersheds worldwide.

     
    more » « less
  4. Abstract

    How precipitation (P) is translated into streamflow (Q) and over what timescales (i.e., “memory”) is difficult to predict without calibration of site‐specific models or using geochemical approaches, posing barriers to prediction in ungauged basins or advancement of general theories. Here, we used a data‐driven approach to identify regional patterns and exogenous controls on P–Q interactions. We applied an information flow analysis, which quantifies uncertainty reduction, to a daily time series of P and Q from 671 watersheds across the conterminous United States. We first demonstrated that information transfer from P to Q primarily reflects the quickflow component of water‐budgets, based on a watershed model. Readily quantifiable information flows show a functional relationship with model parameters, suggesting utility for model calibration. Second, applied to real watersheds, P–Q information flows exhibit seasonally varying behavior within regions in a manner consistent with dominant runoff generation mechanisms. However, the timing and the magnitude of information flows also reflect considerable subregional heterogeneity, likely attributable to differences in watershed size, baseflow contributions, and variation in aerial coverage of preferential flow paths. A regression analysis showed that a combination of climate and watershed characteristics are predictive of P–Q information flows. Though information flows cannot, in most cases, uniquely determine dominant runoff mechanisms, they provide a means to quantify the heterogeneous outcomes of those mechanisms within regions, thereby serving as a benchmarking tool for models developed at the regional scale. Last, information flows characterize regionally specific ways in which catchment connectivity changes from the wet to dry season.

     
    more » « less
  5. Abstract

    A suite of slate samples collected along a 2 km transect crossing the Lishan fault in central Taiwan were evaluated to assess the role of ductile deformation in natural graphitization at lower greenschist facies metamorphic conditions. The process of natural aromatization, or graphitization, of an organic precursor is well established as a thermally driven process; however, experimental studies have shown that the energy provided by deformation can substantially reduce the activation energy required for graphitization. This study provides a natural example of deformation‐induced graphitization. A strain gradient approaching the Lishan fault was established by scanning electron microscope imaging and X‐ray diffraction analysis of phyllosilicates and quartz that showed an increase in the strength of slaty cleavage development via dissolution‐precipitation processes. Thermal conditions were constrained to be near isothermal using calcite‐dolomite geothermometry. Raman spectroscopic results from carbonaceous material, including D1‐full width‐at‐half‐maximum (FWHM), G‐FWHM, Raman band separation (RBS), and a lesser‐known vibrational mode B2g‐FWHM, showed robust linear trends across the same sampling transect. However, the G‐FWHM parameter showed a trend opposite of that expected from thermally driven graphitization. The Raman results are interpreted to reflect a strain‐driven reduction in graphite crystallite size (decrease in G‐FWHM) but improvement in structural ordering in individual coherent domains. A multiple linear regression with anR2value of 0.92 predicts the graphite D1‐FWHM values from the XRD‐derived ratio of muscovite populations and muscovite microstrain, demonstrating the concomitant recrystallization of silicates and carbonaceous material across the strain gradient, despite the disparate processes accommodating the deformation. This study demonstrates the role of deformation in natural graphitization and provides a new perspective on the use of graphite as a geothermometer in strongly deformed greenschist facies rocks.

     
    more » « less