Abstract. En masse application of feature tracking algorithms to satellite image pairs has produced records of glacier surface velocities with global coverage, revolutionizing the understanding of global glacier change. However, glacier velocity records are sometimes incomplete due to gaps in the cloud-free satellite image record (for optical images) and failure of standard feature tracking parameters, e.g., search range, chip size, or estimated displacement, to capture rapid changes in glacier velocity. Here, we present a pipeline for pre-processing commercial high-resolution daily PlanetScope surface reflectance images and for generating georeferenced glacier velocity maps using NASA's autonomous Repeat Image Feature Tracking (autoRIFT) algorithm with customized parameters. We compare our velocity time series to the NASA Inter-Mission Time Series of Land Ice Velocity and Elevation (ITS_LIVE) global glacier velocity dataset, which is produced using autoRIFT, with regional-scale feature tracking parameters. Using five surge-type glaciers as test sites, we demonstrate that the use of customized feature tracking parameters for each glacier improves upon the velocity record provided by ITS_LIVE during periods of rapid glacier acceleration (i.e., changes greater than several meters per day over 2–3 months). We show that ITS_LIVE can fail to capture velocities during glacier surges but that both the use of custom autoRIFT parameters and the inclusion of PlanetScope imagery can capture the progression of order-of-magnitude changes in flow speed with median uncertainties of <0.5 m d−1. Additionally, the PlanetScope image record approximately doubles the amount of optical cloud-free imagery available for each glacier and the number of velocity maps produced outside of the months affected by darkness (i.e., polar night), augmenting the ITS_LIVE record. We demonstrate that these pipelines provide additional insights into speedup behavior for the test glaciers and recommend that they are used for studies that aim to capture glacier velocity change at sub-monthly timescales and with greater spatial detail. 
                        more » 
                        « less   
                    
                            
                            GLAcier Feature Tracking testkit (GLAFT): a statistically and physically based framework for evaluating glacier velocity products derived from optical satellite image feature tracking
                        
                    
    
            Abstract. Glacier velocity measurements are essential to understand ice flow mechanics, monitor natural hazards, and make accurate projections of future sea-level rise. Despite these important applications, the method most commonly used to derive glacier velocity maps, feature tracking, relies on empirical parameter choices that rarely account for glacier physics or uncertainty. Here we test two statistics- and physics-based metrics to evaluate velocity maps derived from optical satellite images of Kaskawulsh Glacier, Yukon, Canada, using a range of existing feature-tracking workflows. Based on inter-comparisons with ground truth data, velocity maps with metrics falling within our recommended ranges contain fewer erroneous measurements and more spatially correlated noise than velocity maps with metrics that deviate from those ranges. Thus, these metric ranges are suitable for refining feature-tracking workflows and evaluating the resulting velocity products. We have released an open-source software package for computing and visualizing these metrics, the GLAcier Feature Tracking testkit (GLAFT). 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10465082
- Publisher / Repository:
- European Geosciences Union
- Date Published:
- Journal Name:
- The Cryosphere
- Volume:
- 17
- Issue:
- 9
- ISSN:
- 1994-0424
- Page Range / eLocation ID:
- 4063 to 4078
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Abstract. We present Glacier Image Velocimetry (GIV), an open-source and easy-to-use software toolkit for rapidly calculating high-spatial-resolutionglacier velocity fields. Glacier ice velocity fields reveal flow dynamics, ice-flux changes, and (with additional data and modelling) icethickness. Obtaining glacier velocity measurements over wide areas with field techniques is labour intensive and often associated with safetyrisks. The recent increased availability of high-resolution, short-repeat-time optical imagery allows us to obtain ice displacement fields using“feature tracking” based on matching persistent irregularities on the ice surface between images and hence, surface velocity over time. GIV isfully parallelized and automatically detects, filters, and extracts velocities from large datasets of images. Through this coupled toolchain and aneasy-to-use GUI, GIV can rapidly analyse hundreds to thousands of image pairs on a laptop or desktop computer. We present four example applicationsof the GIV toolkit in which we complement a glaciology field campaign (Glaciar Perito Moreno, Argentina) and calculate the velocity fields of smallmid-latitude (Glacier d'Argentière, France) and tropical glaciers (Volcán Chimborazo, Ecuador), as well as very large glaciers (Vavilov Ice Cap,Russia). Fully commented MATLAB code and a stand-alone app for GIV are available from GitHub and Zenodo (see https://doi.org/10.5281/zenodo.4624831, Van Wyk de Vries, 2021a).more » « less
- 
            The presence of fog in the background can prevent small and distant objects from being detected, let alone tracked. Under safety-critical conditions, multi-object tracking models require faster tracking speed while maintaining high object-tracking accuracy. The original DeepSORT algorithm used YOLOv4 for the detection phase and a simple neural network for the deep appearance descriptor. Consequently, the feature map generated loses relevant details about the track being matched with a given detection in fog. Targets with a high degree of appearance similarity on the detection frame are more likely to be mismatched, resulting in identity switches or track failures in heavy fog. We propose an improved multi-object tracking model based on the DeepSORT algorithm to improve tracking accuracy and speed under foggy weather conditions. First, we employed our camera-radar fusion network (CR-YOLOnet) in the detection phase for faster and more accurate object detection. We proposed an appearance feature network to replace the basic convolutional neural network. We incorporated GhostNet to take the place of the traditional convolutional layers to generate more features and reduce computational complexities and costs. We adopted a segmentation module and fed the semantic labels of the corresponding input frame to add rich semantic information to the low-level appearance feature maps. Our proposed method outperformed YOLOv5 + DeepSORT with a 35.15% increase in multi-object tracking accuracy, a 32.65% increase in multi-object tracking precision, a speed increase by 37.56%, and identity switches decreased by 46.81%.more » « less
- 
            Abstract. The Thwaites Eastern Ice Shelf buttresses a significant portion of Thwaites Glacier through contact with a pinning point 40 km offshore of the present grounding line. Predicting future rates of Thwaites Glacier’s contribution to sea-level rise depends on the evolution of this pinning point and the resultant change in the ice-shelf stress field since the breakup of the Thwaites Western Glacier Tongue in 2009. Here we use Landsat-8 feature tracking of ice velocity in combination with ice-sheet model perturbation experiments to show how past changes in flow velocity have been governed in large part by changes in lateral shear and pinning point interactions with the Thwaites Western Glacier Tongue. We then use recent satellite altimetry data from ICESat-2 to show that Thwaites Glacier’s grounding line has continued to retreat rapidly; in particular, the grounded area of the pinning point is greatly reduced from earlier mappings in 2014, and grounded ice elevations are continuing to decrease. This loss has created two pinned areas with ice flow now funneled between them. If current rates of surface lowering persist, the Thwaites Eastern Ice Shelf will unpin from the seafloor in less than a decade, despite our finding from airborne radar data that the seafloor underneath the pinning point is about 200 m shallower than previously reported. Advection of relatively thin and mechanically damaged ice onto the remaining portions of the pinning point and feedback mechanisms involving basal melting may further accelerate the unpinning. As a result, ice discharge will likely increase up to 10 % along a 45 km stretch of the grounding line that is currently buttressed by the Thwaites Eastern Ice Shelf.more » « less
- 
            Abstract Rock glaciers are common in alpine landscapes, but their evolution over time and their significance as agents of debris transport are not well‐understood. Here, we assess the movement of an ice‐cemented rock glacier over a range of timescales using GPS surveying, satellite‐based radar, and cosmogenic10Be surface‐exposure dating. GPS and InSAR measurements indicate that the rock glacier moved at an average rate of ∼10 cm yr−1in recent years. Sampled boulders on the rock glacier have cosmogenic surface‐exposure ages from 1.2 to 10 ka, indicating that they have been exposed since the beginning of the Holocene. Exposure ages increase linearly with distance downslope, suggesting a slower long‐term mean surface velocity of 3 ± 0.3 cm yr−1. Our findings suggest that the behavior of this rock glacier may be dominated by episodes of dormancy punctuated by intervals of relatively rapid movement over both short and long timescales. Our findings also show that the volume of the rock glacier corresponds to ∼10 m of material stripped from the headwall during the Holocene. These are the first cosmogenic surface‐exposure ages to constrain movement of a North American rock glacier, and together with the GPS and satellite radar measurements, they reveal that rock glaciers are effective geomorphic agents with dynamic multi‐millennial histories.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    