skip to main content


Title: GLAcier Feature Tracking testkit (GLAFT): a statistically and physically based framework for evaluating glacier velocity products derived from optical satellite image feature tracking
Abstract. Glacier velocity measurements are essential to understand ice flow mechanics, monitor natural hazards, and make accurate projections of future sea-level rise. Despite these important applications, the method most commonly used to derive glacier velocity maps, feature tracking, relies on empirical parameter choices that rarely account for glacier physics or uncertainty. Here we test two statistics- and physics-based metrics to evaluate velocity maps derived from optical satellite images of Kaskawulsh Glacier, Yukon, Canada, using a range of existing feature-tracking workflows. Based on inter-comparisons with ground truth data, velocity maps with metrics falling within our recommended ranges contain fewer erroneous measurements and more spatially correlated noise than velocity maps with metrics that deviate from those ranges. Thus, these metric ranges are suitable for refining feature-tracking workflows and evaluating the resulting velocity products. We have released an open-source software package for computing and visualizing these metrics, the GLAcier Feature Tracking testkit (GLAFT).  more » « less
Award ID(s):
2004826 1928406
NSF-PAR ID:
10465082
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
European Geosciences Union
Date Published:
Journal Name:
The Cryosphere
Volume:
17
Issue:
9
ISSN:
1994-0424
Page Range / eLocation ID:
4063 to 4078
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. We present Glacier Image Velocimetry (GIV), an open-source and easy-to-use software toolkit for rapidly calculating high-spatial-resolutionglacier velocity fields. Glacier ice velocity fields reveal flow dynamics, ice-flux changes, and (with additional data and modelling) icethickness. Obtaining glacier velocity measurements over wide areas with field techniques is labour intensive and often associated with safetyrisks. The recent increased availability of high-resolution, short-repeat-time optical imagery allows us to obtain ice displacement fields using“feature tracking” based on matching persistent irregularities on the ice surface between images and hence, surface velocity over time. GIV isfully parallelized and automatically detects, filters, and extracts velocities from large datasets of images. Through this coupled toolchain and aneasy-to-use GUI, GIV can rapidly analyse hundreds to thousands of image pairs on a laptop or desktop computer. We present four example applicationsof the GIV toolkit in which we complement a glaciology field campaign (Glaciar Perito Moreno, Argentina) and calculate the velocity fields of smallmid-latitude (Glacier d'Argentière, France) and tropical glaciers (Volcán Chimborazo, Ecuador), as well as very large glaciers (Vavilov Ice Cap,Russia). Fully commented MATLAB code and a stand-alone app for GIV are available from GitHub and Zenodo (see https://doi.org/10.5281/zenodo.4624831, Van Wyk de Vries, 2021a). 
    more » « less
  2. Abstract. The Thwaites Eastern Ice Shelf buttresses a significant portion of Thwaites Glacier through contact with a pinning point 40 km offshore of the present grounding line. Predicting future rates of Thwaites Glacier’s contribution to sea-level rise depends on the evolution of this pinning point and the resultant change in the ice-shelf stress field since the breakup of the Thwaites Western Glacier Tongue in 2009. Here we use Landsat-8 feature tracking of ice velocity in combination with ice-sheet model perturbation experiments to show how past changes in flow velocity have been governed in large part by changes in lateral shear and pinning point interactions with the Thwaites Western Glacier Tongue. We then use recent satellite altimetry data from ICESat-2 to show that Thwaites Glacier’s grounding line has continued to retreat rapidly; in particular, the grounded area of the pinning point is greatly reduced from earlier mappings in 2014, and grounded ice elevations are continuing to decrease. This loss has created two pinned areas with ice flow now funneled between them. If current rates of surface lowering persist, the Thwaites Eastern Ice Shelf will unpin from the seafloor in less than a decade, despite our finding from airborne radar data that the seafloor underneath the pinning point is about 200 m shallower than previously reported. Advection of relatively thin and mechanically damaged ice onto the remaining portions of the pinning point and feedback mechanisms involving basal melting may further accelerate the unpinning. As a result, ice discharge will likely increase up to 10 % along a 45 km stretch of the grounding line that is currently buttressed by the Thwaites Eastern Ice Shelf. 
    more » « less
  3. Abstract

    The Bering‐Bagley Glacier System (BBGS), Alaska, Earth's largest temperate surging glacier, surged in 2008–2013. We use numerical modeling and satellite observations to investigate how surging in a large and complex glacier system differs from surging in smaller glaciers for which our current understanding of the surge phenomenon is based. With numerical simulations of a long quiescent phase and a short surge phase in the BBGS, we show that surging is more spatiotemporally complex in larger glaciers with multiple reservoir areas forming during quiescence which interact in a cascading manner when ice accelerates during the surge phase. For each phase, we analyze the simulated elevation‐change and ice‐velocity pattern, infer information on the evolving basal drainage system through hydropotential analysis, and supplement these findings with observational data such as CryoSat‐2 digital elevation maps. During the quiescent simulation, water drainage paths become increasingly lateral and hydropotential wells form indicating an expanding storage capacity of subglacial water. These results are attributed to local bedrock topography characterized by large subglacial ridges that dam the down‐glacier flow of ice and water. In the surge simulation, we model surge evolution through Bering Glacier's trunk by imposing a basal friction representation that mimics a propagating surge wave. As the surge progresses, drainage efficiency further degrades in the active surging‐zone from its already inefficient, end‐of‐quiescence state. Results from this study improve our knowledge of surging in large and complex systems which generalizes to glacial accelerations observed in outlet glaciers of Greenland, thus reducing uncertainty in modeling sea‐level rise.

     
    more » « less
  4. Abstract

    Rock glaciers are common in alpine landscapes, but their evolution over time and their significance as agents of debris transport are not well‐understood. Here, we assess the movement of an ice‐cemented rock glacier over a range of timescales using GPS surveying, satellite‐based radar, and cosmogenic10Be surface‐exposure dating. GPS and InSAR measurements indicate that the rock glacier moved at an average rate of ∼10 cm yr−1in recent years. Sampled boulders on the rock glacier have cosmogenic surface‐exposure ages from 1.2 to 10 ka, indicating that they have been exposed since the beginning of the Holocene. Exposure ages increase linearly with distance downslope, suggesting a slower long‐term mean surface velocity of 3 ± 0.3 cm yr−1. Our findings suggest that the behavior of this rock glacier may be dominated by episodes of dormancy punctuated by intervals of relatively rapid movement over both short and long timescales. Our findings also show that the volume of the rock glacier corresponds to ∼10 m of material stripped from the headwall during the Holocene. These are the first cosmogenic surface‐exposure ages to constrain movement of a North American rock glacier, and together with the GPS and satellite radar measurements, they reveal that rock glaciers are effective geomorphic agents with dynamic multi‐millennial histories.

     
    more » « less
  5. Abstract. Rock glaciers are a prominent component of many alpine landscapes andconstitute a significant water resource in some arid mountainenvironments. Here, we employ satellite-based interferometric syntheticaperture radar (InSAR) between 2016 and 2019 to identify and monitor activeand transitional rock glaciers in the Uinta Mountains (Utah, USA), an area of∼3000 km2. We used mean velocity maps to generate aninventory for the Uinta Mountains containing 205 active and transitional rockglaciers. These rock glaciers are 11.9 ha in area on average andlocated at a mean elevation of 3308 m, where mean annual airtemperature is −0.25 ∘C. The mean downslope velocity for theinventory is 1.94 cm yr−1, but individual rock glaciers have velocities ranging from0.35 to 6.04 cm yr−1. To search for relationships with climaticdrivers, we investigated the time-dependent motion of three rock glaciers. Wefound that rock glacier motion has a significant seasonal component, withrates that are more than 5 times faster during the late summer compared to therest of the year. Rock glacier velocities also appear to be correlated withthe snow water equivalent of the previous winter's snowpack. Our resultsdemonstrate the ability to use satellite InSAR to monitor rock glaciers overlarge areas and provide insight into the environmental factors that controltheir kinematics. 
    more » « less