skip to main content


Title: Neutron Star Radii, Deformabilities, and Moments of Inertia from Experimental and Ab Initio Theory Constraints of the 208Pb Neutron Skin Thickness
Recent experimental and ab initio theory investigations of the 208Pb neutron skin thickness have the potential to inform the neutron star equation of state. In particular, the strong correlation between the 208Pb neutron skin thickness and the pressure of neutron matter at normal nuclear densities leads to modified predictions for the radii, tidal deformabilities, and moments of inertia of typical 1.4M⊙ neutron stars. In the present work, we study the relative impact of these recent analyses of the 208Pb neutron skin thickness on bulk properties of neutron stars within a Bayesian statistical analysis. Two models for the equation of state prior are employed in order to highlight the role of the highly uncertain high-density equation of state. From our combined Bayesian analysis of nuclear theory, nuclear experiment, and observational constraints on the dense matter equation of state, we find at the 90% credibility level R1.4=12.36−0.73+0.38 km for the radius of a 1.4M⊙ neutron star, R2.0=11.96−0.71+0.94 km for the radius of a 2.0M⊙ neutron star, Λ1.4=440−144+103 for the tidal deformability of a 1.4M⊙ neutron star, and I1.338=1.425−0.146+0.074×1045gcm2 for the moment of inertia of PSR J0737-3039A whose mass is 1.338M⊙.  more » « less
Award ID(s):
1652199
NSF-PAR ID:
10465255
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Galaxies
Volume:
10
Issue:
5
ISSN:
2075-4434
Page Range / eLocation ID:
99
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We combine equation of state of dense matter up to twice nuclear saturation density (nsat = 0.16 fm−3 ) obtained using chiral effective field theory (χEFT), and recent observations of neutron stars to gain insights about the high-density matter encountered in their cores. A key element in our study is the recent Bayesian analysis of correlated EFT truncation errors based on order-byorder calculations up to next-to-next-to-next-to-leading order in the χEFT expansion. We refine the bounds on the maximum mass imposed by causality at high densities, and provide stringent limits on the maximum and minimum radii of ∼ 1.4 M and ∼ 2.0 M stars. Including χEFT predictions from nsat to 2 nsat reduces the permitted ranges of the radius of a 1.4 M star, R1.4, by ∼ 3.5 km. If observations indicate R1.4 < 11.2 km, our study implies that either the squared speed of sound c 2 s > 1/2 for densities above 2 nsat, or that χEFT breaks down below 2 nsat. We also comment on the nature of the secondary compact object in GW190814 with mass ' 2.6 M , and discuss the implications of massive neutron stars > 2.1 M (2.6 M ) in future radio and gravitational-wave searches. Some form of strongly interacting matter with c 2 s > 0.35 (0.55) must be realized in the cores of such massive neutron stars. In the absence of phase transitions below 2 nsat, the small tidal deformability inferred from GW170817 lends support for the relatively small pressure predicted by χEFT for the baryon density nB in the range 1−2 nsat. Together they imply that the rapid stiffening required to support a high maximum mass should occur only when nB & 1.5 − 1.8 nsat. 
    more » « less
  2. Abstract

    The detection of GW170817, the first neutron star-neutron star merger observed by Advanced LIGO and Virgo, and its following analyses represent the first contributions of gravitational wave data to understanding dense matter. Parameterizing the high density section of the equation of state of both neutron stars through spectral decomposition, and imposing a lower limit on the maximum mass value, led to an estimate of the stars’ radii ofkm andkm (Abbottet al2018Phys. Rev. Lett.121161101). These values do not, however, take into account any uncertainty owed to the choice of the crust low-density equation of state, which was fixed to reproduce the SLy equation of state model (Douchin and Haensel 2001Astron. Astrophys.380151). We here re-analyze GW170817 data and establish that different crust models do not strongly impact the mass or tidal deformability of a neutron star—it is impossible to distinguish between low-density models with gravitational wave analysis. However, the crust does have an effect on inferred radius. We predict the systematic error due to this effect using neutron star structure equations, and compare the prediction to results from full parameter estimation runs. For GW170817, this systematic error affects the radius estimate by 0.3 km, approximatelyof the neutron stars’ radii.

     
    more » « less
  3. Observations of neutron-star mergers with distinct messengers, including gravitational waves and electromagnetic signals, can be used to study the behavior of matter denser than an atomic nucleus and to measure the expansion rate of the Universe as quantified by the Hubble constant. We performed a joint analysis of the gravitational-wave event GW170817 with its electromagnetic counterparts AT2017gfo and GRB170817A, and the gravitational-wave event GW190425, both originating from neutron-star mergers. We combined these with previous measurements of pulsars using x-ray and radio observations, and nuclear-theory computations using chiral effective field theory, to constrain the neutron-star equation of state. We found that the radius of a 1.4–solar mass neutron star is11.750.81+0.86km at 90% confidence and the Hubble constant is66.24.2+4.4at 1σ uncertainty.

     
    more » « less
  4. Abstract

    The multi-messenger detection of the gravitational-wave signal GW170817, the corresponding kilonova AT2017gfo and the short gamma-ray burst GRB170817A, as well as the observed afterglow has delivered a scientific breakthrough. For an accurate interpretation of all these different messengers, one requires robust theoretical models that describe the emitted gravitational-wave, the electromagnetic emission, and dense matter reliably. In addition, one needs efficient and accurate computational tools to ensure a correct cross-correlation between the models and the observational data. For this purpose, we have developed the Nuclear-physics and Multi-Messenger Astrophysics framework NMMA. The code allows incorporation of nuclear-physics constraints at low densities as well as X-ray and radio observations of isolated neutron stars. In previous works, the NMMA code has allowed us to constrain the equation of state of supranuclear dense matter, to measure the Hubble constant, and to compare dense-matter physics probed in neutron-star mergers and in heavy-ion collisions, and to classify electromagnetic observations and perform model selection. Here, we show an extension of the NMMA code as a first attempt of analyzing the gravitational-wave signal, the kilonova, and the gamma-ray burst afterglow simultaneously. Incorporating all available information, we estimate the radius of a 1.4Mneutron star to be$$R=11.9{8}_{-0.40}^{+0.35}$$R=11.980.40+0.35km.

     
    more » « less
  5. We present two recent parametrizations of the equation of state (FSU2R and FSU2H models) that reproduce the properties of nuclear matter and finite nuclei, fulfill constraints on high-density matter stemming from heavy-ion collisions, produce 2 M_Sun neutron stars, and generate neutron star radii below 13 km. Making use of these equations of state, cooling simulations for isolated neutron stars are performed. We find that two of the models studied, FSU2R (with nucleons) and, in particular, FSU2H (with nucleons and hyperons), show very good agreement with cooling observations, even without including nucleon pairing. This indicates that cooling observations are compatible with an equation of state that produces a soft nuclear symmetry energy and, thus, generates small neutron star radii. Nevertheless, both schemes produce cold isolated neutron stars with masses above 1.8 M_Sun. 
    more » « less