skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Microscope: Causality Inference Crossing the Hardware and Software Boundary from Hardware Perspective
The increasing complexity of System-on-Chip (SoC) designs and the rise of third-party vendors in the semiconductor industry have led to unprecedented security concerns. Traditional formal methods struggle to address software-exploited hardware bugs, and existing solutions for hardware-software co-verification often fall short. This paper presents Microscope, a novel framework for inferring software instruction patterns that can trigger hardware vulnerabilities in SoC designs. Microscope enhances the Structural Causal Model (SCM) with hardware features, creating a scalable Hardware Structural Causal Model (HW-SCM). A domain-specific language (DSL) in SMT-LIB represents the HW-SCM and predefined security properties, with incremental SMT solving deducing possible instructions. Microscope identifies causality to determine whether a hardware threat could result from any software events, providing a valuable resource for patching hardware bugs and generating test input. Extensive experimentation demonstrates Microscope's capability to infer the causality of a wide range of vulnerabilities and bugs located in SoC-level benchmarks.  more » « less
Award ID(s):
2019310
PAR ID:
10465266
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the ASPDAC Asia and South Pacific Design Automation Conference
ISSN:
2153-6961
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose Microscope, a new framework that addresses growing security issues in System-on-Chip (SoC) designs due to their complexity and involvement of third-party vendors. Traditional methods are inadequate for identifying software-exploited hardware vulnerabilities, and existing solutions for hardware-software co-verification often fall short. The framework has been proven effective through extensive testing on SoC benchmarks, and it has outperformed existing methods and commercial tools in comparative analyses. Index Terms—Causality Inference, Hardware Security, 
    more » « less
  2. We propose Microscope, a new framework that addresses growing security issues in System-on-Chip (SoC) designs due to their complexity and involvement of third-party vendors. Traditional methods are inadequate for identifying softwareexploited hardware vulnerabilities, and existing solutions for hardware-software co-verification often fall short. The framework has been proven effective through extensive testing on SoC benchmarks and it has outperformed existing methods and commercial tools in comparative analyses. 
    more » « less
  3. null (Ed.)
    Assertions are widely used for functional validation as well as coverage analysis for both software and hardware designs. Assertions enable runtime error detection as well as faster localization of errors. While there is a vast literature on both software and hardware assertions for monitoring functional scenarios, there is limited effort in utilizing assertions to monitor System-on-Chip (SoC) security vulnerabilities. We have identified common SoC security vulnerabilities and defined several classes of assertions to enable runtime checking of security vulnerabilities. A major challenge in assertion-based validation is how to activate the security assertions to ensure that they are valid. While existing test generation using model checking is promising, it cannot generate directed tests for large designs due to state space explosion. We propose an automated and scalable mechanism to generate directed tests using a combination of symbolic execution and concrete simulation of RTL models. Experimental results on diverse benchmarks demonstrate that the directed tests are able to activate security assertions non-vacuously. 
    more » « less
  4. Nadel, Alexander; Rozier, Kristin Yvonne (Ed.)
    Symbolic execution is a powerful verification tool for hardware designs, in particular for security validation. However, symbolic execution suffers from the path explosion problem in which the number of paths to explore grows exponentially with the number of branches in the design. We introduce a new approach, piecewise composition, which leverages the modular structure of hardware to transfer the work of path exploration to SMT solvers. Piecewise composition works by recognizing that independent parts of a design can each be explored once, and the exploration reused. A hardware design with N independent always blocks and at most b branch points per block will require exploration of O((2^b)N) paths in a single clock cycle with our approach compared to O(2^(bN)) paths using traditional symbolic execution. We present Sylvia, a symbolic execution engine implementing piecewise composition. The engine operates directly over RTL without requiring translation to a netlist or software simulation. We evaluate our tool on multiple open-source SoC and CPU designs, including the OR1200 and PULPissimo RISC-V SoC. The piecewise composition technique reduces the number of paths explored by an order of magnitude and reduces the runtime by 97% compared to our baseline. Using 84 properties from the security literature we find assertion violations in open-source designs that traditional model checking and formal verification tools do not find. 
    more » « less
  5. Isadora is a methodology for creating information flow specifications of hardware designs. The methodology combines information flow tracking and specification mining to produce a set of information flow properties that are suitable for use during the security validation process, and which support a better understanding of the security posture of the design. Isadora is fully automated; the user provides only the design under consideration and a testbench and need not supply a threat model nor security specifications. We evaluate Isadora on a RISC-V processor plus two designs related to SoC access control. Isadora generates security properties that align with those suggested by the Common Weakness Enumerations (CWEs), and in the case of the SoC designs, align with the properties written manually by security experts. 
    more » « less