skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Finding the Low Tech, High Impact Solution to Computational Thinking Instruction
Key ideas: Computational thinking and computer science can be taught to students in primary grades using low tech tools. Teacher leaders from rural Appalachia conducted a professional development training that supported other educators in their community. Learning computational thinking and computer science in the primary grades is important for setting a foundation that can be built upon throughout middle and high school.  more » « less
Award ID(s):
2219401
NSF-PAR ID:
10465541
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Digital Promise Blog https://digitalpromise.org/2023/08/22/finding-the-low-tech-high-impact-solution-to-computational-thinking-instruction/
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper reports findings from the efforts of a university-based research team as they worked with middle school educators within formal school structures to infuse computer science principles and computational thinking practices. Despite the need to integrate these skills within regular classroom practices to allow all students the opportunity to learn these essential 21st Century skills, prior practice has been to offer these learning experiences outside of mainstream curricula where only a subset of students has access. We have sought to leverage elements of the research-practice partnership framework to achieve our project objectives of integrating computer science and computational thinking within middle science classrooms. Utilizing a qualitative approach to inquiry, we present narratives from three case schools, report on themes across work sites, and share recommendations to guide other practitioners and researchers who are looking to engage in technology-related initiatives to impact the lives of middle grades students. 
    more » « less
  2. As the demand for computing careers increases, it is important to implement strategies to broaden the participation in computer science for African Americans. Computer science courses and academic pathways are not always offered in secondary schools. Many teachers are not trained in computer science, yet are pushed to incorporate more computing, computational thinking, and computer usage. A qualitative focus group study was implemented to assess the computer science identities of African American teachers and of their respective urban secondary schools serving African American students. Three major codes were identified: district administration of computer and computing implementation, teacher attitudes towards computer science instruction, and teachers’ recommendations to improve computer science and computational thinking instruction and outreach for African American secondary school students. Findings can be used to improve computer science and technology rollout programs from county and district administrations, teacher instruction with digital tools, and computer science outreach for African American secondary school students. 
    more » « less
  3. This article provides an overview of the work pioneered by the consortium of collaborators in the Billion Oyster Curriculum and Community Enterprise for Restoration Science Project (BOP-CCERS). The BOP-CCERS are working to support computational thinking in the New York City public school classrooms by creating curriculum which combines:1. The Field Station Research (Oyster Restoration Stations) and data collection2. The Billion Oyster Project Digital Platform and data input and storage 3. The New York State Science Intermediate Level Learning Standards. 4. The Computer Science Teachers Association K-12 Computer Science StandardsThe integration of computational thinking in the STEM middle school classroom is showcased through the intertwining of these dimensions into a trans-disciplinary learning experience that is rich in both content and practice. Students will be able to explain real-world phenomena found in their own community and design possible solutions through the key components of computational thinking.The Curriculum and Community Enterprise for Restoration Science Project digital platform and curriculum will be the resources that provide the underpinnings of the integration of computational thinking in the STEM middle school classroom. The primary functions of the platform include the collection and housing of the data pertaining to the harbor and its component parts, both abiotic and biotic and the storage of the curriculum for both the classroom and the field stations. 
    more » « less
  4. Chinn, C. ; Tan, E. ; & Kali, Y. (Ed.)
    Computational thinking (CT) is ubiquitous in modern science, yet rarely integrated at the elementary school level. Moreover, access to computer science education at the PK-12 level is inequitably distributed. We believe that access to CT must be available earlier and implemented with the support of an equitable pedagogical framework. Our poster will describe our Accessible Computational Thinking (ACT) research project exploring professional development with elementary teachers on integrating computational thinking with Culturally Responsive Teaching practices. 
    more » « less
  5. Chinn, C. ; Tan, E. ; Chan, C. ; Kali, Y. (Ed.)
    Computational thinking (CT) is ubiquitous in modern science, yet rarely integrated at the elementary school level. Moreover, access to computer science education at the PK-12 level is inequitably distributed. We believe that access to CT must be available earlier and implemented with the support of an equitable pedagogical framework. Our poster will describe our Accessible Computational Thinking (ACT) research project exploring professional development with elementary teachers on integrating computational thinking with Culturally Responsive Teaching practices. 
    more » « less