The chemistry of copper (Cu) in seawater is well known to be dominated by complexation with organic ligands. The prevailing paradigm is that Cu forms strong but labile complexes. Recently, a novel procedure revealed that only a small fraction of dissolved Cu exists as labile complexes. The majority is present as a fraction that is relatively inert on timescales of weeks or more and probably does not participate in coordination exchange reactions, including biologically mediated processes. Samples collected from the 2018 GEOTRACES GP15 cruise show that throughout the interior of the Pacific Ocean, this inert fraction comprises about 90% of the dissolved Cu. Labile Cu accumulates in surface waters, probably arising from photochemical decomposition of the inert fraction. There is also a modest accumulation of labile Cu near deep sea sediments and along the Alaskan shelf and slope. The results have important implications for Cu transport and biological availability. Inert Cu may influence Cu transport throughout the water column and contribute to the linear increase in Cu with depth, a distribution which is hard to explain for a biologically active trace metal. The origins of inert Cu are unknown. It may be produced slowly within the water column on the timescale of meridional overturning circulation. In the Columbia River, between 92% and 98% of the dissolved Cu is in the inert fraction, suggesting a possible terrestrial source of inert Cu to the ocean.
Copper (Cu) is an important micronutrient for marine organisms, which can also be toxic at elevated concentrations. Here, we present a new model of global ocean Cu biogeochemical cycling, constrained by GEOTRACES observations, with key processes including sources from rivers, dust, and sediments, biological uptake and remineralization of Cu, reversible scavenging of Cu onto sinking particles, conversion of Cu between labile and inert species, and ocean circulation. In order for the model to match observations, in particular the relatively small increase in Cu concentrations along the global “conveyor belt,” we find it is necessary to include significant external sources of Cu with a magnitude of roughly 1.3 Gmol yr−1, having a relatively stronger impact on the Atlantic Ocean, though the relative contributions of river, dust, and sediment sources are poorly constrained. The observed nearly linear increase in Cu concentrations with depth requires a strong benthic source of Cu, which includes the sedimentary release of Cu that was reversibly scavenged from the water column. The processes controlling Cu cycling in the Arctic Ocean appear to be unique, requiring both relatively high Cu concentrations in Arctic rivers and reduced scavenging in the Arctic. Observed partitioning of Cu between labile and inert phases is reproduced in the model by the slow conversion of labile Cu to inert in the whole water column with a half‐life of ∼250 years, and the photodegradation of inert Cu to labile in the surface ocean with a minimum half‐life of ∼2 years at the equator.
more » « less- NSF-PAR ID:
- 10465643
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Global Biogeochemical Cycles
- Volume:
- 37
- Issue:
- 9
- ISSN:
- 0886-6236
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Recent studies, including many from the GEOTRACES program, have expanded our knowledge of trace metals in the Arctic Ocean, an isolated ocean dominated by continental shelf and riverine inputs. Here, we report a unique, pan‐Arctic linear relationship between dissolved copper (Cu) and nickel (Ni) present north of 60°N that is absent in other oceans. The correlation is driven primarily by high Cu and Ni concentrations in the low salinity, river‐influenced surface Arctic and low, homogeneous concentrations in Arctic deep waters, opposing their typical global distributions. Rivers are a major source of both metals, which is most evident within the central Arctic's Transpolar Drift. Local decoupling of the linear Cu‐Ni relationship along the Chukchi Shelf and within the Canada Basin upper halocline reveals that Ni is additionally modified by biological cycling and shelf sediment processes, while Cu is mostly sourced from riverine inputs and influenced by mixing. This observation highlights differences in their chemistries: Cu is more prone to complexation with organic ligands, stabilizing its riverine source fluxes into the Arctic, while Ni is more labile and is dominated by biological processes. Within the Canadian Arctic Archipelago, an important source of Arctic water to the Atlantic Ocean, contributions of Cu and Ni from meteoric waters and the halocline are attenuated during transit to the Atlantic. Additionally, Cu and Ni in deep waters diminish with age due to isolation from surface sources, with higher concentrations in the younger Eastern Arctic basins and lower concentrations in the older Western Arctic basins.
-
Abstract Copper (Cu) is a biologically important trace metal for marine plankton, but it is also toxic at high concentrations. Understanding the global distribution of Cu and the processes controlling its cycling in the ocean is important for understanding how the distribution of this important element can respond to climate change. Here, we use available observations of dissolved copper, an artificial neural network, and an ocean circulation inverse model, to derive a global estimate of the three‐dimensional distribution and cycling of dissolved Cu in the ocean. We find that there is net removal by bio‐assimilation and/or scavenging of dissolved Cu in the surface ocean at a rate of ~1.7 Gmol yr−1and that both the concentration and export of dissolved Cu are highest in the Southern Ocean. In the subsurface above the near‐sediment layer, dissolved Cu is removed at a net rate of ~2.4 Gmol yr−1, consistent with scavenging onto sinking particles, contributing to an increase in the flux of particulate Cu with depth. This removal of Cu by scavenging in the interior ocean is balanced by a net near‐sediment source of dissolved Cu, which sustains a gradual increase in the concentration of dissolved Cu with depth. Globally, this net near‐sediment source is estimated at ~2.6 Gmol yr−1in the deep ocean and ~0.8 Gmol yr−1along continental shelves and slopes. Our results suggest an active oceanic dissolved Cu cycle with a mean internal ocean residence time of ~530 years, highlighting the potential for climate‐driven changes in the marine Cu cycle.
-
Abstract. Cobalt is the scarcest of metallic micronutrients and displays a complex biogeochemical cycle. This study examines the distribution, chemical speciation, and biogeochemistry of dissolved cobalt during the US North Atlantic GEOTRACES transect expeditions (GA03/3_e), which took place in the fall of 2010 and 2011. Two major subsurface sources of cobalt to the North Atlantic were identified. The more prominent of the two was a large plume of cobalt emanating from the African coast off the eastern tropical North Atlantic coincident with the oxygen minimum zone (OMZ) likely due to reductive dissolution, biouptake and remineralization, and aeolian dust deposition. The occurrence of this plume in an OMZ with oxygen above suboxic levels implies a high threshold for persistence of dissolved cobalt plumes. The other major subsurface source came from Upper Labrador Seawater, which may carry high cobalt concentrations due to the interaction of this water mass with resuspended sediment at the western margin or from transport further upstream. Minor sources of cobalt came from dust, coastal surface waters and hydrothermal systems along the Mid-Atlantic Ridge. The full depth section of cobalt chemical speciation revealed near-complete complexation in surface waters, even within regions of high dust deposition. However, labile cobalt observed below the euphotic zone demonstrated that strong cobalt-binding ligands were not present in excess of the total cobalt concentration there, implying that mesopelagic labile cobalt was sourced from the remineralization of sinking organic matter. In the upper water column, correlations were observed between total cobalt and phosphate, and between labile cobalt and phosphate, demonstrating a strong biological influence on cobalt cycling. Along the western margin off the North American coast, this correlation with phosphate was no longer observed and instead a relationship between cobalt and salinity was observed, reflecting the importance of coastal input processes on cobalt distributions. In deep waters, both total and labile cobalt concentrations were lower than in intermediate depth waters, demonstrating that scavenging may remove labile cobalt from the water column. Total and labile cobalt distributions were also compared to a previously published South Atlantic GEOTRACES-compliant zonal transect (CoFeMUG, GAc01) to discern regional biogeochemical differences. Together, these Atlantic sectional studies highlight the dynamic ecological stoichiometry of total and labile cobalt. As increasing anthropogenic use and subsequent release of cobalt poses the potential to overpower natural cobalt signals in the oceans, it is more important than ever to establish a baseline understanding of cobalt distributions in the ocean.
-
Abstract This study provides new data on the properties of aerosol iron (Fe) over the Antarctic Peninsula, one of the fastest warming regions on Earth in recent decades. Atmospheric deposition delivers Fe, a limiting micronutrient, to the Southern Ocean, and aerosol particle size influences the air‐to‐sea deposition rate and fractional solubility of aerosol Fe. Size‐segregated aerosols were collected at Palmer Station on the West Antarctic Peninsula during austral summer 2016–2017. Results show single‐mode size distribution of aerosol Fe, peaking at 4.4 μm diameter. The average concentration of total aerosol Fe was 1.3 (±0.40) ng m−3(range 0.74–1.8 ng m−3). High concentrations of total aerosol Fe occurred in January, implying increased Fe source strength then. Total labile Fe varied between 0.019 and 0.095 ng m−3, and labile Fe (II) accounted for ~90% of the total labile Fe. The average fractional solubility for total Fe was 3.8% (±1.5%) (range 2.5–7.3%). Estimated dry deposition fluxes for the study period were 3.2 μg m−2 year−1for total labile Fe and 83 μg m−2 year−1for total Fe in aerosols. We speculate that local and regional dust sources in Antarctica contributed to the observed aerosol Fe in austral summer and that warming on the Antarctic Peninsula during the past half century may have increased the formation of dust sources in this region. The potential biogeochemical impact of atmospheric Fe input to the West Antarctic Peninsula shelf waters and adjacent pelagic surface waters of the Southern Ocean may need to be re‐evaluated.