skip to main content


Title: The impact of baryonic potentials on the gravothermal evolution of self-interacting dark matter haloes
ABSTRACT

The presence of a central baryonic potential can have a significant impact on the gravothermal evolution of self-interacting dark matter (SIDM) haloes. We extend a semi-analytical fluid model to incorporate the influence of a static baryonic potential and calibrate it using controlled N-body simulations. We construct benchmark scenarios with varying baryon concentrations and different SIDM models, including constant and velocity-dependent self-interacting cross-sections. The presence of the baryonic potential induces changes in SIDM halo properties, including central density, core size, and velocity dispersion, and it accelerates the halo’s evolution in both expansion and collapse phases. Furthermore, we observe a quasi-universality in the gravothermal evolution of SIDM haloes with the baryonic potential, resembling a previously known feature in the absence of the baryons. By appropriately rescaling the physical quantities that characterize the SIDM haloes, the evolution of all our benchmark cases exhibits remarkable similarity. Our findings offer a framework for testing SIDM predictions using observations of galactic systems where baryons play a significant dynamical role.

 
more » « less
NSF-PAR ID:
10465680
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
526
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
p. 758-770
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT We present a suite of baryonic cosmological zoom-in simulations of self-interacting dark matter (SIDM) haloes within the ‘Feedback In Realistic Environment’ (FIRE) project. The three simulated haloes have virial masses of $\sim 10^{12}\, \text{M}_\odot$ at z = 0, and we study velocity-independent self-interaction cross sections of 1 and 10 ${\rm cm^2 \, g^{-1}}$. We study star formation rates and the shape of dark matter density profiles of the parent haloes in both cold dark matter (CDM) and SIDM models. Galaxies formed in the SIDM haloes have higher star formation rates at z ≤ 1, resulting in more massive galaxies compared to the CDM simulations. While both CDM and SIDM simulations show diverse shape of the dark matter density profiles, the SIDM haloes can reach higher and more steep central densities within few kpcs compared to the CDM haloes. We identify a correlation between the build-up of the stars within the half-mass radii of the galaxies and the growth in the central dark matter densities. The thermalization process in the SIDM haloes is enhanced in the presence of a dense stellar component. Hence, SIDM haloes with highly concentrated baryonic profiles are predicted to have higher central dark matter densities than the CDM haloes. Overall, the SIDM haloes are more responsive to the presence of a massive baryonic distribution than their CDM counterparts. 
    more » « less
  2. ABSTRACT We combine the isothermal Jeans model and the model of adiabatic halo contraction into a semi-analytic procedure for computing the density profile of self-interacting dark-matter (SIDM) haloes with the gravitational influence from the inhabitant galaxies. The model agrees well with cosmological SIDM simulations over the entire core-forming stage up to the onset of gravothermal core-collapse. Using this model, we show that the halo response to baryons is more diverse in SIDM than in CDM and depends sensitively on galaxy size, a desirable feature in the context of the structural diversity of bright dwarfs. The fast speed of the method facilitates analyses that would be challenging for numerical simulations – notably, we quantify the SIDM halo response as functions of the baryonic properties, on a fine mesh grid spanned by the baryon-to-total-mass ratio, Mb/Mvir, and galaxy compactness, r1/2/Rvir; we show with high statistical precision that for typical Milky-Way-like systems, the SIDM profiles are similar to their CDM counterparts; and we delineate the regime of core-collapse in the Mb/Mvir − r1/2/Rvir space, for a given cross section and concentration. Finally, we compare the isothermal Jeans model with the more sophisticated gravothermal fluid model, and show that the former yields faster core formation and agrees better with cosmological simulations. We attribute the difference to whether the target CDM halo is used as a boundary condition or as the initial condition for the gravothermal evolution, and thus comment on possible improvements of the fluid model. We have made our model publicly available at https://github.com/JiangFangzhou/SIDM. 
    more » « less
  3. ABSTRACT

    We present a suite of 16 high-resolution hydrodynamic simulations of an isolated dwarf galaxy (gaseous and stellar disc plus a stellar bulge) within an initially cuspy dark matter (DM) halo, including self-interactions between the DM particles; as well as stochastic star formation and subsequent supernova feedback (SNF), implemented using the stellar feedback model SMUGGLE. The simulations start from identical initial conditions, and we regulate the strength of DM self-interactions and SNF by systematically varying the self-interacting DM (SIDM) momentum transfer cross-section and the gas density threshold for star formation. The DM halo forms a constant density core of similar size and shape for several combinations of those two parameters. Haloes with cores that are formed due to SIDM (adiabatic cusp-core transformation) have velocity dispersion profiles that are closer to isothermal than those of haloes with cores that are formed due to SNF in simulations with bursty star formation (impulsive cusp-core transformation). Impulsive SNF can generate positive stellar age gradients and increase random motion in the gas at the centre of the galaxy. Simulated galaxies in haloes with cores that were formed adiabatically are spatially more extended, with stellar metallicity gradients that are shallower (at late times) than those of galaxies in other simulations. Such observable properties of the gas and the stars, which indicate either an adiabatic or an impulsive evolution of the gravitational potential, may be used to determine whether observed cores in DM haloes are formed through DM self-interactions or in response to impulsive SNF.

     
    more » « less
  4. ABSTRACT

    We present a new set of cosmological zoom-in simulations of a Milky Way (MW)-like galaxy that for the first time include elastic velocity-dependent self-interacting dark matter (SIDM) and IllustrisTNG physics. With these simulations, we investigate the interaction between SIDM and baryons and its effects on the galaxy evolution process. We also introduce a novel set of modified dark matter-only simulations that can reasonably replicate the effects of fully realized hydrodynamics on the DM halo while simplifying the analysis and lowering the computational cost. We find that baryons change the thermal structure of the central region of the halo to a greater extent than the SIDM scatterings for MW-like galaxies. Additionally, we find that the new thermal structure of the MW-like halo causes SIDM to create cuspier central densities rather than cores because the SIDM scatterings remove the thermal support by transferring heat away from the centre of the galaxy. We find that this effect, caused by baryon contraction, begins to affect galaxies with a stellar mass of 108 M⊙ and increases in strength to the MW-mass scale.

     
    more » « less
  5. ABSTRACT

    Self-interacting dark matter (SIDM) offers the potential to mitigate some of the discrepancies between simulated cold dark matter (CDM) and observed galactic properties. We introduce a physically motivated SIDM model to understand the effects of self interactions on the properties of Milky Way and dwarf galaxy sized haloes. This model consists of dark matter with a nearly degenerate excited state, which allows for both elastic and inelastic scattering. In particular, the model includes a significant probability for particles to up-scatter from the ground state to the excited state. We simulate a suite of zoom-in Milky Way-sized N-body haloes with six models with different scattering cross sections to study the effects of up-scattering in SIDM models. We find that the up-scattering reaction greatly increases the central densities of the main halo through the loss of kinetic energy. However, the physical model still results in significant coring due to the presence of elastic scattering and down-scattering. These effects are not as apparent in the subhalo population compared to the main halo, but the number of subhaloes is reduced compared to CDM.

     
    more » « less