skip to main content


Title: Resolving the Carbon‐Climate Feedback Potential of Wetland CO 2 and CH 4 Fluxes in Alaska
Abstract

Boreal‐Arctic regions are key stores of organic carbon (C) and play a major role in the greenhouse gas balance of high‐latitude ecosystems. The carbon‐climate (C‐climate) feedback potential of northern high‐latitude ecosystems remains poorly understood due to uncertainty in temperature and precipitation controls on carbon dioxide (CO2) uptake and the decomposition of soil C into CO2and methane (CH4) fluxes. While CH4fluxes account for a smaller component of the C balance, the climatic impact of CH4outweighs CO2(28–34 times larger global warming potential on a 100‐year scale), highlighting the need to jointly resolve the climatic sensitivities of both CO2and CH4. Here, we jointly constrain a terrestrial biosphere model with in situ CO2and CH4flux observations at seven eddy covariance sites using a data‐model integration approach to resolve the integrated environmental controls on land‐atmosphere CO2and CH4exchanges in Alaska. Based on the combined CO2and CH4flux responses to climate variables, we find that 1970‐present climate trends will induce positive C‐climate feedback at all tundra sites, and negative C‐climate feedback at the boreal and shrub fen sites. The positive C‐climate feedback at the tundra sites is predominantly driven by increased CH4emissions while the negative C‐climate feedback at the boreal site is predominantly driven by increased CO2uptake (80% from decreased heterotrophic respiration, and 20% from increased photosynthesis). Our study demonstrates the need for joint observational constraints on CO2and CH4biogeochemical processes—and their associated climatic sensitivities—for resolving the sign and magnitude of high‐latitude ecosystem C‐climate feedback in the coming decades.

 
more » « less
NSF-PAR ID:
10465682
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Global Biogeochemical Cycles
Volume:
37
Issue:
9
ISSN:
0886-6236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    High‐latitude climate change has impacted vegetation productivity, composition, and distribution across tundra ecosystems. Over the past few decades in northern Alaska, emergent macrophytes have increased in cover and density, coincident with increased air and water temperature, active layer depth, and nutrient availability. Unraveling the covarying climate and environmental controls influencing long‐term change trajectories is paramount for advancing our predictive understanding of the causes and consequences of warming in permafrost ecosystems. Within a climate‐controlled carbon flux monitoring system, we evaluate the impact of elevated nutrient availability associated with degraded permafrost (high‐treatment) and maximum field observations (low‐treatment), on aquatic macrophyte growth and methane (CH4) emissions. Nine aquaticArctophila fulva‐dominated tundra monoliths were extracted from tundra ponds near Utqiaġvik, Alaska, and placed in growth chambers that controlled ambient conditions (i.e., light, temperature, and water table), while measuring plant growth (periodically) and CH4fluxes (continuously) for 12 weeks. Results indicate that high nutrient treatments similar to that released from permafrost thaw can increase macrophyte biomass and total CH4emission by 54 and 64%, respectively. However, low treatments did not respond to fertilization. We estimate that permafrost thaw in tundra wetlands near Utqiaġvik have the potential to enhance regional CH4efflux by 30%. This study demonstrates the sensitivity of arctic tundra wetland biogeochemistry to nutrient release from permafrost thaw and suggests the decadal‐scale expansion ofA. fulva‐dominant aquatic plant communities, and increased CH4emissions in the region were likely in response to thawing permafrost, potentially representing a novel case study of the permafrost carbon feedback to warming.

     
    more » « less
  2. Abstract

    Arctic‐boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic‐boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003–2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco), net ecosystem CO2exchange (NEE;Reco − GPP), and terrestrial methane (CH4) emissions for the Arctic‐boreal zone using a satellite data‐driven process‐model for northern ecosystems (TCFM‐Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM‐Arctic to obtain daily 1‐km2flux estimates and annual carbon budgets for the pan‐Arctic‐boreal region. Across the domain, the model indicated an overall average NEE sink of −850 Tg CO2‐C year−1. Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4emissions from tundra and boreal wetlands (not accounting for aquatic CH4) were estimated at 35 Tg CH4‐C year−1. Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high‐latitude carbon status and also indicates a continued need for integrated site‐to‐regional assessments to monitor the vulnerability of these ecosystems to climate change.

     
    more » « less
  3. Abstract

    Permafrost degradation in peatlands is altering vegetation and soil properties and impacting net carbon storage. We studied four adjacent sites in Alaska with varied permafrost regimes, including a black spruce forest on a peat plateau with permafrost, two collapse scar bogs of different ages formed following thermokarst, and a rich fen without permafrost. Measurements included year‐round eddy covariance estimates of net carbon dioxide (CO2), mid‐April to October methane (CH4) emissions, and environmental variables. From 2011 to 2022, annual rainfall was above the historical average, snow water equivalent increased, and snow‐season duration shortened due to later snow return. Seasonally thawed active layer depths also increased. During this period, all ecosystems acted as slight annual sources of CO2(13–59 g C m−2 year−1) and stronger sources of CH4(11–14 g CH4 m−2from ~April to October). The interannual variability of net ecosystem exchange was high, approximately ±100 g C m−2 year−1, or twice what has been previously reported across other boreal sites. Net CO2release was positively related to increased summer rainfall and winter snow water equivalent and later snow return. Controls over CH4emissions were related to increased soil moisture and inundation status. The dominant emitter of carbon was the rich fen, which, in addition to being a source of CO2, was also the largest CH4emitter. These results suggest that the future carbon‐source strength of boreal lowlands in Interior Alaska may be determined by the area occupied by minerotrophic fens, which are expected to become more abundant as permafrost thaw increases hydrologic connectivity. Since our measurements occur within close proximity of each other (≤1 km2), this study also has implications for the spatial scale and data used in benchmarking carbon cycle models and emphasizes the necessity of long‐term measurements to identify carbon cycle process changes in a warming climate.

     
    more » « less
  4. Abstract

    Experimental and ambient warming of Arctic tundra results in emissions of greenhouse gases to the atmosphere, contributing to a positive feedback to climate warming. Estimates of gas emissions from lakes and terrestrial tundra confirm the significance of aquatic fluxes in greenhouse gas budgets, whereas few estimates describe emissions from fluvial networks. We measured dissolved gas concentrations and estimated emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) from water tracks, vegetated depressions that hydrologically connect hillslope soils to lakes and streams. Concentrations of trace gases generally increased as ground thaw deepened through the growing season, indicating active production of greenhouse gases in thawed soils. Wet antecedent conditions were correlated with a decline in CO2and CH4concentrations. Dissolved N2O in excess of atmospheric equilibrium occurred in drier water tracks, but on average water tracks took up N2O from the atmosphere at low rates. Estimated CO2emission rates for water tracks were among the highest observed for Arctic aquatic ecosystems, whereas CH4emissions were of similar magnitude to streams. Despite occupying less than 1% of total catchment area, surface waters within water tracks were an estimated source of up to 53–85% of total CH4emissions from their catchments and offset the terrestrial C sink by 5–9% during the growing season. Water tracks are abundant features of tundra landscapes that contain warmer soils and incur deeper thaw than adjacent terrestrial ecosystems and as such might contribute to ongoing and accelerating release of greenhouse gases from permafrost soils to the atmosphere.

     
    more » « less
  5. Abstract

    Significant uncertainties persist concerning how Arctic soil tundra carbon emission responds to environmental changes. In this study, 24 cores were sampled from drier (high centre polygons and rims) and wetter (low centre polygons and troughs) permafrost tundra ecosystems. We examined how soil CO2and CH4fluxes responded to laboratory-based manipulations of soil temperature (and associated thaw depth) and water table depth, representing current and projected conditions in the Arctic. Similar soil CO2respiration rates occurred in both the drier and the wetter sites, suggesting that a significant proportion of soil CO2emission occurs via anaerobic respiration under water-saturated conditions in these Arctic tundra ecosystems. In the absence of vegetation, soil CO2respiration rates decreased sharply within the first 7 weeks of the experiment, while CH4emissions remained stable for the entire 26 weeks of the experiment. These patterns suggest that soil CO2emission is more related to plant input than CH4production and emission. The stable and substantial CH4emission observed over the entire course of the experiment suggests that temperature limitations, rather than labile carbon limitations, play a predominant role in CH4production in deeper soil layers. This is likely due to the presence of a substantial source of labile carbon in these carbon-rich soils. The small soil temperature difference (a median difference of 1 °C) and a more substantial thaw depth difference (a median difference of 6 cm) between the high and low temperature treatments resulted in a non-significant difference between soil CO2and CH4emissions. Although hydrology continued to be the primary factor influencing CH4emissions, these emissions remained low in the drier ecosystem, even with a water table at the surface. This result suggests the potential absence of a methanogenic microbial community in high-centre polygon and rim ecosystems. Overall, our results suggest that the temperature increases reported for these Arctic regions are not responsible for increases in carbon losses. Instead, it is the changes in hydrology that exert significant control over soil CO2and CH4emissions.

     
    more » « less