skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Building on the strengths of a double-hybrid density functional for excitation energies and inverted singlet-triplet energy gaps
It is demonstrated that a double hybrid density functional approximation, ωB88PTPSS, that incorporates equipartition of density functional theory and the non-local correlation, however with a meta-generalized gradient approximation correlation functional, as well as with the range-separated exchange of ωB2PLYP, provides accurate excitation energies for conventional systems, as well as correct prescription of negative singlet–triplet gaps for non-conventional systems with inverted gaps, without any necessity for parametric scaling of the same-spin and opposite-spin non-local correlation energies. Examined over “safe” excitations of the QUESTDB set, ωB88PTPSS performs quite well for open-shell systems, correctly and fairly accurately [relative to equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) reference] predicts negative gaps for 50 systems with inverted singlet–triplet gaps, and is one of the leading performers for intramolecular charge-transfer excitations and achieves near-second-order approximate coupled cluster (CC2) and second-order algebraic diagrammatic construction quality for the Q1 and Q2 subsets. Subsequently, we tested ωB88PTPSS on two sets of real-life examples from recent computational chemistry literature–the low energy bands of chlorophyll a (Chl a) and a set of thermally activated delayed fluorescence (TADF) systems. For Chl a, ωB88PTPSS qualitatively and quantitatively achieves DLPNO-STEOM-CCSD-level performance and provides excellent agreement with experiment. For TADF systems, ωB88PTPSS agrees quite well with spin-component-scaled CC2 (SCS-CC2) excitation energies, as well as experimental values, for the gaps between the S1 and T1 excited states.  more » « less
Award ID(s):
1800387
PAR ID:
10465772
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
158
Issue:
2
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In organic light-emitting diodes (OLEDs), only 25% of electrically generated excitons are in a singlet state, S1, and the remaining 75% are in a triplet state, T1. In thermally activated delayed fluorescence (TADF) chromophores the transition from the nonradiative T1 state to the radiative S1 state can be thermally activated, which improves the efficiency of OLEDs. Chromophores with inverted energy ordering of S1 and T1 states, S1 < T1, are superior to TADF chromophores, thanks to the absence of an energy barrier for the transition from T1 to S1. We benchmark the performance of time-dependent density functional theory using different exchange-correlation functionals and find that scaled long-range corrected double-hybrid functionals correctly predict the inverted singlet–triplet gaps of N-substituted phenalene derivatives. We then show that the inverted energy ordering of S1 and T1 is an intrinsic property of graphitic carbon nitride flakes. A design strategy of new chromophores with inverted singlet–triplet gaps is proposed. The color of emitted light can be fine-tuned through flake size and amine substitution on flake vertices. 
    more » « less
  2. Understanding the process of molecular photoexcitation is crucial in various fields, including drug development, materials science, photovoltaics, and more. The electronic vertical excitation energy is a critical property, for example in determining the singlet–triplet gap of chromophores. However, a full understanding of excited-state processes requires additional explorations of the excited-state potential energy surface and electronic properties, which is greatly aided by the availability of analytic energy gradients. Owing to its robust high accuracy over a wide range of chemical problems, equation-of-motion coupled cluster with single and double excitations (EOM-CCSD) is a powerful method for predicting excited-state properties, and the implementation of analytic gradients of many EOM-CCSD variants (excitation energies, ionization potentials, electron attachment energies, etc.) along with numerous successful applications highlights the flexibility of the method. In specific cases where a higher level of accuracy is needed or in more complex electronic structures, the inclusion of triple excitations becomes essential, for example, in the EOM-CCSD* approach of Saeh and Stanton. In this work, we derive and implement for the first time the analytic gradients of EOMEE-CCSD*, which also provides a template for analytic gradients of related excited-state methods with perturbative triple excitations. The capabilities of analytic EOMEE-CCSD* gradients are illustrated by several representative examples. 
    more » « less
  3. ABSTRACT The energies and geometries of the lowest lying singlet and triplet states of the four diradicals formed by removing two H atoms from thiophene have been characterized. We utilized the highly correlated, multireference methods configuration interaction with single and double excitations with and without the Pople correction for size‐extensivity (MR‐CISD+Q and MR‐CISD) and averaged quadratic coupled cluster theory (MR‐AQCC). CAS (8,7) and CAS (10,8) active spaces involving σ, σ*, π, and π* orbitals were employed along with the cc‐pVDZ and cc‐pVTZ basis sets. The larger active space included the two electrons in the nonbonding sp2hybrid orbital on sulfur. We find that all didehydro isomers exist as planar, stable ground state singlets. The singlet‐triplet (S‐T) adiabatic gaps range from 15 to 25 kcal/mol while the vertical splittings are 21–35 kcal/mol. The 2,3 isomer has the lowest absolute ground state singlet energy and the largest adiabatic and vertical S‐T splitting. The ground states of the 2,3‐, and 2,5‐didehydrothiophene isomers are predicted to exhibit the smallest and largest diradical character, respectively, based on their electronic structures, spin densities and bonding analysis. To our knowledge, no experimental excitation energies of any of the didehydrothiophene isomers are available, and our computed MR‐AQCC/cc‐pVTZ data are believed to be among the most accurate computed results. This extensive study shows a competitive performance between MR‐AQCC and MR‐CISD+Q. 
    more » « less
  4. null (Ed.)
    The energy of the lowest-lying triplet state (T1) relative to the ground and first-excited singlet states (S0, S1) plays a critical role in optical multiexcitonic processes of organic chromophores. Focusing on triplet–triplet annihilation (TTA) upconversion, the S0 to T1 energy gap, known as the triplet energy, is difficult to measure experimentally for most molecules of interest. Ab initio predictions can provide a useful alternative, however low-scaling electronic structure methods such as the Kohn–Sham and time-dependent variants of Density Functional Theory (DFT) rely heavily on the fraction of exact exchange chosen for a given functional, and tend to be unreliable when strong electronic correlation is present. Here, we use auxiliary-field quantum Monte Carlo (AFQMC), a scalable electronic structure method capable of accurately describing even strongly correlated molecules, to predict the triplet energies for a series of candidate annihilators for TTA upconversion, including 9,10 substituted anthracenes and substituted benzothiadiazole (BTD) and benzoselenodiazole (BSeD) compounds. We compare our results to predictions from a number of commonly used DFT functionals, as well as DLPNO-CCSD(T 0 ), a localized approximation to coupled cluster with singles, doubles, and perturbative triples. Together with S1 estimates from absorption/emission spectra, which are well-reproduced by TD-DFT calculations employing the range-corrected hybrid functional CAM-B3LYP, we provide predictions regarding the thermodynamic feasibility of upconversion by requiring (a) the measured T1 of the sensitizer exceeds that of the calculated T1 of the candidate annihilator, and (b) twice the T1 of the annihilator exceeds its S1 energetic value. We demonstrate a successful example of in silico discovery of a novel annihilator, phenyl-substituted BTD, and present experimental validation via low temperature phosphorescence and the presence of upconverted blue light emission when coupled to a platinum octaethylporphyrin (PtOEP) sensitizer. The BTD framework thus represents a new class of annihilators for TTA upconversion. Its chemical functionalization, guided by the computational tools utilized herein, provides a promising route towards high energy (violet to near-UV) emission. 
    more » « less
  5. Thermally activated delayed fluorescence (TADF) is the internal conversion of triplet excitons into singlet excitons via reverse intersystem crossing (RISC). It improves the efficiency of OLEDs by enabling the harvesting of nonradiative triplet excitons. Multiple resonance (MR) induced TADF chromophores exhibit an additional advantage of high color purity due to their rigid conformation. However, owing to the strict design rules there is a limited number of known MR-TADF chromophores. For applications in full-color high-resolution OLED displays, it is desirable to extend the variety of available chromophores and their color range. We computationally explore the effect of chemical modification on the properties of the MR-TADF chromophore quinolino[3,2,1-de]acridine-5,9-dione (QAD). QAD derivatives are evaluated based on several metrics: The formation energy is associated with the ease of synthesis; The spatial distribution of the frontier orbitals indicates whether a compound remains an MR-TADF chromophore or turns into a donor-acceptor TADF chromophore; The change of the singlet excitation energy compared to the parent compound corresponds to the change in color; The energy difference between the lowest singlet and triplet states corresponds to the barrier to RISC; The reorganization energy is associated with the color purity. Based on these metrics, QAD-6CN is predicted to be a promising MR-TADF chromophore with a cyan hue. This demonstrates that computer simulations may aid the design of new MR-TADF chromophores by chemical modification. 
    more » « less