skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Can we make color switchable photovoltaic windows?
The development of smart windows could enhance the functionality of the large glass facades found in modern buildings around the globe. While these facades offer occupants views and natural light, the poor insulating qualities of glass cut against the desire for more efficient use of energy resources. In this perspective article, we explore recent developments for next-generation smart window technologies that can offer improved energy management through dynamic color switching, reducing heating and cooling loads, while also generating electricity through the photovoltaic effect. Approaches with chromogenic organic dyes and halide perovskite semiconductors have been developed for switchable photovoltaic windows, but each of these comes with unique challenges. These approaches are briefly discussed and evaluated with an eye to their future prospects. We hope that this perspective will spur other researchers as they think about the various materials and chemical design challenges associated with color switchable photovoltaic windows. Perhaps these initial demonstrations and research ideas can then become marketable products that efficiently use space to improve occupant comfort and reduce the energy demand of the built environment.  more » « less
Award ID(s):
2128632
PAR ID:
10465993
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Chemical Science
Volume:
14
Issue:
29
ISSN:
2041-6520
Page Range / eLocation ID:
7828 to 7841
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Windows are one of the main contributors to building energy consumption, and emerging dynamic window technologies offer improved performance. Specifically, NIRfocused window technologies are desirable in climates that consume both heating and cooling energy. However, the whole building energy effects of changeable NIR response of building windows have not been captured, largely due to the lack of an appropriate energy simulation method and NIR-focused window modeling. This study focuses on developing a simulation method that enables the comprehensive evaluation of the whole building energy effects of dynamic NIR modulations. Using an EnergyPlus EMS-based parametric framework, annual energy savings were estimated for a switchable between glass built-in system across three representative cities in ASHRAE climate zones 3, 4, and 5. This NIR-focused technology yielded energy savings of up to 19%. The results demonstrate the effects of NIR-focused window technologies on heating and cooling loads in different climates. 
    more » « less
  2. Abstract Smart materials with coupled optical and mechanical responsiveness to external stimuli, as inspired by nature, are of interest for the biomimetic design of the next generation of soft machines and wearable electronics. A tough polymer that shows adaptable and switchable mechanical and fluorescent properties is designed using a fluorescent lanthanide, europium (Eu). The dynamic Eu‐iminodiacetate (IDA) coordination is incorporated to build up the physical cross‐linking network in the polymer film consisting of two interpenetrated networks. Reversible disruption and reformation of Eu‐IDA complexation endow high stiffness, toughness, and stretchability to the polymer elastomer through energy dissipation of dynamic coordination. Water that binds to Eu3+ions shows an interesting impact simultaneously on the mechanical strength and fluorescent emission of the Eu‐containing polymer elastomer. The mechanical states of the polymer, along with the visually optical response through the emission color change of the polymer film, are reversibly switchable with moisture as a stimulus. The coupled response in the mechanical strength and emissive color in one single material is potentially applicable for smart materials requiring an optical readout of their mechanical properties. 
    more » « less
  3. Abstract The dynamic optical switch of plasmonic nanostructures is highly desirable due to its promising applications in many smart optical devices. To address the challenges in the reversibility and transmittance contrast of the plasmonic electrochromic devices, here, a strategy is reported to fabricate color switchable electrochromic films through electro‐responsive dissolution and deposition of Ag on predefined hollow shells of Au/Ag alloy. Using the hollow Au/Ag alloy nanostructures as stable seeds for site‐specific deposition of Ag, elimination of the random self‐nucleation events is enabled and optimal reversibility in color switching is allowed. The hollow structure further enables excellent transmittance contrast between the bleached and colored states. With its additional advantages such as the convenience for preparation, high sensitivity, and field‐tunable optical property, it is believed that this new electrochromic film represents a unique platform for designing novel smart optical devices. 
    more » « less
  4. Building-integrated photovoltaic (BIPV) systems blend energy generation with traditional architectural facade functions, promoting the development of zero-energy buildings by reducing energy consumption, lowering greenhouse gas emissions, and enhancing aesthetic value. Despite these benefits, the integration of photovoltaic technology into building materials introduces challenges, notably in ensuring structural integrity, maintaining thermal performance, and securing long-term durability under diverse environmental conditions. This review examines current standards and building codes relevant to BIPV windows, highlighting the necessity for testing protocols that encompass combined stressors from extreme weather events exacerbated by climate change. Through a case study focused on Singapore, the review underscores the rising frequency of combined heat and wind events, advocating for robust standards and adaptive policies. The paper identifies critical research gaps and proposes future directions to enhance the reliability and performance of BIPV systems, aiming to solidify their role in sustainable building practices. 
    more » « less
  5. Transport of heat through windows accounts for more than 25% of heating and cooling losses in residential buildings. Silica-based aerogels are translucent with extremely low thermal conductivity, which make them attractive for incorporation into the interspaces of glazing units. Widespread incorporation of monolithic-silica-aerogel-based windows could result in significant energy savings associated with the heating and cooling of buildings. However, monolithic silica aerogels do not have the optical clarity of vision glass, due to light scattering by the solid matrix, and often have surface imperfections, both of which render these materials less appealing for glazing applications. Here, we demonstrate a variety of approaches to preparing aesthetically pleasing monolithic silica aerogel by a rapid supercritical extraction method for incorporation into glazing units, including: (1) process improvements that result in monoliths with higher visible light transmission; (2) innovative mold design for the preparation of uniform aerogel monoliths; (3) glazing designs that use thinner monoliths; and (4) the incorporation of artistic effects using dyes and laser etching to prepare glazing units with mosaic- or stained-glass-like patterns in which surface imperfections are perceived as features of the design rather than flaws. 
    more » « less