skip to main content


This content will become publicly available on June 28, 2024

Title: Efficient PHY Layer Abstraction for 5G NR Sidelink in ns-3
Physical (PHY) layer abstraction is an effective method to reduce the runtimes compared with link simulations but still accurately characterize the link performance. As a result, PHY layer abstraction for IEEE 802.11 WLAN and 3GPP LTE/5G has been widely configured in the network simulators such as ns-3, which achieve faster system-level simulations quantifying the network performance. Since the first publicly accessible 5G NR Sidelink (SL) link simulator has been recently developed, it provides a possibility of implementing the first PHY layer abstraction on 5G NR SL. This work deploys an efficient PHY layer abstraction method (i.e., EESM-log-SGN) for 5G NR SL based on the offline NR SL link simulation. The obtained layer abstraction which is further stored in ns-3 for use aims at the common 5G NR SL scenario of OFDM unicast single layer mapping in the context of Independent and Identically Distributed (i.i.d.) frequency-selective channels. We provide details about implementation, performance, and validation.  more » « less
Award ID(s):
2016379
NSF-PAR ID:
10466309
Author(s) / Creator(s):
; ;
Editor(s):
Henderson, Thomas; Imputato, Pasquale; Liu, Yuchen; Gamess, Eric
Date Published:
Journal Name:
WNS3 '23: Proceedings of the 2023 Workshop on ns-3
Page Range / eLocation ID:
115 to 120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Packet-level network simulators such as ns-3 require accurate physical (PHY) layer models for packet error rate (PER) for wideband transmission over fading wireless channels. To manage complexity and achieve practical runtimes, suitable link-to-system mappings can convert high fidelity PHY layer models for use by packet-level simulators. This work reports on two new contributions to the ns-3 Wi-Fi module, which presently only contains error models for Single Input Single Output (SISO), additive white Gaussian noise (AWGN) channels. To improve this, a complete implementation of a link-to-system mapping technique for IEEE 802.11 TGn fading channels is presented that involves a method for efficient generation of channel realizations within ns-3. The runtimes for the prior method suffers from scalability issues with increasing dimensionality of Multiple Input Multiple Output (MIMO) systems. We next propose a novel method to directly characterize the probability distribution of the"effective SNR" in link-to-system mapping. This approach is shown to require modest storage and not only reduces ns-3 runtime, it is also insensitive to growth of MIMO dimensionality. We describe the principles of this new method and provide details about its implementation, performance, and validation in ns-3. 
    more » « less
  2. Henderson, Thomas ; Imputato, Pasquale ; Liu, Yuchen ; Gamess, Eric (Ed.)
    The performance of Wi-Fi networks depends on the ability of devices to adapt their transmissions to dynamic channel/network conditions. Hence, “Rate Adaptation Algorithms (RAAs)” have been devised to allow nodes to select appropriate modulation and coding schemes (and other parameters) in response to varying channel/network conditions. These algorithms are neither standardized nor typically divulged by vendors, and devising a ‘performance-optimal’ RAA for specific scenario remains an active topic that necessitates a complex, multi-parameter cross-layer (PHY/MAC) approach. The ns-3 network simulator offers detailed models of the Wi-Fi medium access control (MAC) layer, including three reference RAA implementations; however testing and validation of these RAA models has been very limited to date. This paper reports on initial test and validation for ns-3 RAA models via 802.11n/ac/ax simulations. After describing the RAA scope and implementations, we explore and summarize insights from test results as to a) whether the ns-3 RAAs are able to achieve the correct rates as configuration is varied and b) how they respond to step changes in the received signal-to-noise ratio (SNR) as a means for exploring their convergence properties. 
    more » « less
  3. The continuous increase in demanding for availability and ultra-reliability of low-latency and broadband wireless connections is instigating further research in the standardization of next-generation mobile systems. 6G networks, among other benefits, should offer global ubiquitous mobility thanks to the utilization of the Space segment as an intelligent yet autonomous ecosystem. In this framework, multi-layered networks will take charge of providing connectivity by implementing Cloud-Radio Access Network (C-RAN) functionalities on heterogeneous nodes distributed over aerial and orbital segments. Unmanned Aerial Vehicles (UAVs), High-Altitude Plat-forms (HAPs), and small satellites compose the Space ecosystem encompassing the 3D networks. Recently, a lot of interest has been raised about splitting operations to distribute baseband processing functionalities among such nodes to balance the computational load and reduce the power consumption. This work focuses on the hardware development of C-RAN physical (PHY-) layer operations to derive their computational and energy demand. More in detail, the 5G Downlink Shared Channel (DLSCH) and the Physical Downlink Shared Channel (PDSCH) are first simulated in MATLAB environment to evaluate the variation of computational load depending on the selected splitting options and number of antennas available at transmitter (TX) and receiver (RX) side. Then, the PHY-layer processing chain is software-implemented and the various splitting options are tested on low-cost processors, such as Raspberry Pi (RP) 3B+ and 4B. By overclocking the RPs, we compute the execution time and we derive the instruction count (IC) per program for each considered splitting option so to achieve the mega instructions per second (MIPS) for the expected processing time. Finally, by comparing the performance achieved by the employed RPs with that of Nvidia Jetson Nano (JN) processor used as benchmark, we shall discuss about size, weight, power and cost (SWaP-C)... 
    more » « less
  4. null (Ed.)
    To address the needs of emerging bandwidth-intensive applications in 5G and beyond era, the millimeter-wave (mmWave) band with very large spectrum availability have been recognized as a promising choice for future wireless communications. In particular, IEEE 802.11ad/ay operating on 60 GHz carrier frequency is a highly anticipated wireless local area network (WLAN) technology for supporting ultra-high-rate data transmissions. In this paper, we describe additions to the ns-3 802.11ad simulator that include 3D obstacle specifications, line-of-sight calculations, and a sparse cluster-based channel model, which allow researchers to study complex mmWave Wi-Fi network deployments under more realistic conditions. We also study the performance accuracy and simulation efficiency of the implemented statistical channel model as compared to a deterministic ray-tracing based channel model. Through extensive ns-3 simulations, the results show that the implemented channel model has the potential to achieve good accuracy in performance evaluation while improving simulation efficiency. We also provide a detailed parametric analysis on the statistical channel model, which yields insight on how to properly tune the model parameters to further improve performance accuracy. 
    more » « less
  5. Baseband processing is one of the most time-consuming and computationally expensive tasks in radio access networks (RANs), which is typically realized in dedicated hardware. The concept of virtualizing the RAN functions by moving their computation to edge data centers can significantly reduce the deployment cost and enable more flexible use of the network resources. Recent studies have focused on software-based baseband processing for large-scale sub-6 GHz MIMO systems, while 5G also embraces the millimeter-wave (mmWave) frequency bands to achieve further improved data rates leveraging the widely available spectrum. Therefore, it is important to build a platform for the experimental investigation of software-based baseband processing for mmWave MIMO systems. In this paper, we implement programmable mmWave MIMO radios equipped with real-time baseband processing capability, leveraging the open-access PAWR COSMOS testbed. We first develop Agora-UHD, which enables UHD-based software-defined radios (SDRs) to interface with Agora, an open-source software realization of real-time massive MIMO baseband processing. Next, we integrate Agora-UHD with the USRP SDRs and IBM 28 GHz phased array antenna module (PAAM) subsystem boards deployed in the PAWR COSMOS testbed. We demonstrate a 2×2 28 GHz polarization MIMO link with a bandwidth of 122.88 MHz, and show that it can meet the real-time processing deadline of 0.375 ms (3 transmission time intervals for numerology 3 in 5G NR FR2) using only 8 CPU cores. The source code of Agora-UHD and its integration with the programmable 28 GHz radios in the COSMOS testbed with example tutorials are made publicly available. 
    more » « less