skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring the association of Brownfield remediation status with socioeconomic conditions in Wayne County, MI
Abstract Urban neighborhoods with locations of environmental contamination, known as brownfields, impact entire neighborhoods, but corrective environmental remedial action on brownfields is often tracked on an individual property basis, neglecting the larger neighborhood-level impact. This study addresses this impact by examining spatial differences between brownfields with unmitigated environmental concerns (open site) and sites that are considered fully mitigated or closed in urban neighborhoods (closed site) on the US census tract scale in Wayne County, MI. Michigan’s Department of Environment, Great Lakes, and Energy’s leaking underground storage tank (LUST) database provided brownfield information for Wayne County. Local indicators of spatial association (LISA) produced maps of spatial clustering and outliers. A McNemar’s test demonstrated significant discordances in LISA categories between LUST open and closed sites ( p  < 0.001). Geographically weighted regressions (GWR) evaluated the association between open and closed site spatial density (open-closed) with socioeconomic variables (population density, proportion of White or Black residents, proportion of college educated populations, the percentage of owner-occupied units, vacant units, rented units, and median household value). Final multivariate GWR showed that population density, being Black, college education, vacant units, and renter occupied units were significantly associated ( p  < 0.05) with open-closed, and that those associations varied across Wayne County. Increases in Black population was associated with increased open-closed. Increases in vacant units, renter-occupied units, and college education were associated with decreased open-closed. These results provide input for environmental justice research to identify inequalities and discover the distribution of environmental hazards among urban neighborhoods.  more » « less
Award ID(s):
1735038
PAR ID:
10466385
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Environmental Science and Pollution Research
Volume:
30
Issue:
21
ISSN:
1614-7499
Page Range / eLocation ID:
60768 to 60776
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The benefits of the urban tree and tree canopy (UTC) are increasingly crucial in addressing urban sustainability. Yet, increasingly evident from earlier research is the distributional inequities of UTC and active efforts to expand tree plantings. Less is known about the dynamics of UTC loss over time and location. This study aims to understand the dynamics of UTC change, especially canopy loss, and to investigate the drivers of the loss. This study draws on a high–resolution dataset of an urban canopy in Portland, Oregon, USA, assessing changes in UTC from 2014 to 2020. By integrating demographic, biophysical, and policy data with UTC information, we use a spatial autoregressive model to identify the drivers of UTC loss. The results reveal an unexpected spatial distribution of UTC change: less gain in the neighborhoods with the least UTC, and greater loss in the neighborhoods with moderate UTC. This study identifies four primary drivers of UTC loss: socioeconomic characteristics, urban form, activities on trees, and residential status. Factors such as population density, race, and income have an impact on canopy loss, as well as the building footprint and the number of multifamily housing units; residential statuses, such as the proportion of owner-occupied housing and residential stability, impact canopy loss. 
    more » « less
  2. Traffic crashes significantly contribute to global fatalities, particularly in urban areas, highlighting the need to evaluate the relationship between urban environments and traffic safety. This study extends former spatial modeling frameworks by drawing paths between global models, including spatial lag (SLM), and spatial error (SEM), and local models, including geographically weighted regression (GWR), multi-scale geographically weighted regression (MGWR), and multi-scale geographically weighted regression with spatially lagged dependent variable (MGWRL). Utilizing the proposed framework, this study analyzes severe traffic crashes in relation to urban built environments using various spatial regression models within Leon County, Florida. According to the results, SLM outperforms OLS, SEM, and GWR models. Local models with lagged dependent variables outperform both the global and generic versions of the local models in all performance measures, whereas MGWR and MGWRL outperform GWR and GWRL. Local models performed better than global models, showing spatial non-stationarity; so, the relationship between the dependent and independent variables varies over space. The better performance of models with lagged dependent variables signifies that the spatial distribution of severe crashes is correlated. Finally, the better performance of multi-scale local models than classical local models indicates varying influences of independent variables with different bandwidths. According to the MGWRL model, census block groups close to the urban area with higher population, higher education level, and lower car ownership rates have lower crash rates. On the contrary, motor vehicle percentage for commuting is found to have a negative association with severe crash rate, which suggests the locality of the mentioned associations. 
    more » « less
  3. Abstract Here we use remotely sensed land surface temperature measurements to explore the distribution of the United States’ urban heating burden, both at high resolution (within cities or counties) and at scale (across the whole contiguous United States). While a rich literature has documented neighborhood‐level disparities in urban heat exposures in individual cities, data constraints have precluded comparisons across locations. Here, drawing on urban temperature anomalies during extreme summer surface temperature events from all 1,056 US counties with more than 10 developed census tracts, we find that the poorest tracts (and those with lowest average education levels) within a county are significantly hotter than the richest (and more educated) neighborhoods for 76% of these counties (54% for education); we also find that neighborhoods with higher Black, Hispanic, and Asian population shares are hotter than the more White, non‐Hispanic areas in each county. This holds in counties with both large and small spreads in these population shares, and for 71% of all counties the significant racial urban heat disparities persist even when adjusting for income. Although individual locations have different histories that have contributed to race‐ and class‐based geographies, we find that the physical features of the urban environments driving these surface heat exposure gradients are fairly uniform across the country. Systematically, the disproportionate heat surface exposures faced by minority communities are due to more built‐up neighborhoods, less vegetation, and—to a lesser extent—higher population density. 
    more » « less
  4. Xu, Gang (Ed.)
    Recent advances in quantitative tools for examining urban morphology enable the development of morphometrics that can characterize the size, shape, and placement of buildings; the relationships between them; and their association with broader patterns of development. Although these methods have the potential to provide substantial insight into the ways in which neighborhood morphology shapes the socioeconomic and demographic characteristics of neighborhoods and communities, this question is largely unexplored. Using building footprints in five of the ten largest U.S. metropolitan areas (Atlanta, Boston, Chicago, Houston, and Los Angeles) and the open-source R package,foot, we examine how neighborhood morphology differs across U.S. metropolitan areas and across the urban-exurban landscape. Principal components analysis, unsupervised classification (K-means), and Ordinary Least Squares regression analysis are used to develop a morphological typology of neighborhoods and to examine its association with the spatial, socioeconomic, and demographic characteristics of census tracts. Our findings illustrate substantial variation in the morphology of neighborhoods, both across the five metropolitan areas as well as between central cities, suburbs, and the urban fringe within each metropolitan area. We identify five different types of neighborhoods indicative of different stages of development and distributed unevenly across the urban landscape: these include low-density neighborhoods on the urban fringe; mixed use and high-density residential areas in central cities; and uniform residential neighborhoods in suburban cities. Results from regression analysis illustrate that the prevalence of each of these forms is closely associated with variation in socioeconomic and demographic characteristics such as population density, the prevalence of multifamily housing, and income, race/ethnicity, homeownership, and commuting by car. We conclude by discussing the implications of our findings and suggesting avenues for future research on neighborhood morphology, including ways that it might provide insight into issues such as zoning and land use, housing policy, and residential segregation. 
    more » « less
  5. Fine scale data collection on vulnerability metrics is necessary for just policy outcomes. Those most likely to be disproportionately affected by specific climate risks should be identified early so that the needs of vulnerable communities (especially historically marginalized communities) can be addressed and mitigated in accordance with climate justice principles. While there is a growing body of event-specific and place-based studies, systematic studies on coastal populations at risk have typically not applied equity principles and have often ignored attributes such as race and ethnic composition, age structure, urban/rural classification, and housing tenure. Additionally, assumptions about future population trends depend on understanding past spatial patterns of change, as well as demographic and socioeconomic characteristics of the populations at risk, especially considering increasing coastal hazards. Yet, with few exceptions, research on coastal vulnerability has not analyzed changes in exposure over time and has not systematically addressed implications for communities of color over time. This paper seeks to fill these gaps. In this paper, using an equity lens and spatial demographic methods with the finest-resolution data available (census blocks), we estimate the extent of exposure and population change from 1990 to 2020 in the low elevation coastal zone in the continental United States. We find that the population of the LECZ has increased during this period, primarily by the growth of the urban population which has risen from about 22 million to 31 million persons. From 2000 to 2020, the urban population consistently grew at higher rates inside the LECZ than outside of it, reversing the pattern from the decade prior. We also examine changes in the population by race and Hispanic origin, urban and rural status, and a set of more expansive vulnerability themes. Our estimates, tabulated by counties and states, reveal the concentration and characteristics of exposure and changes to it over the past 30 years. Key findings include: residents of the LECZ are much older than average; Black residents are overrepresented in renter-occupied housing units in the urban LECZ; and from 2000 to 2020, Hispanic population growth was much higher in urban LECZ areas than urban areas elsewhere. These systematic insights into the demographic attributes of the populations most at risk of sea-level rise and associated coastal hazards can be used to ensure adaptation, mitigation, and disaster-related policies are tailored to the specific needs of these communities and actors at local, regional, and national scales. It also showcases how spatial methods can be used to understand demographic change and be put in place for future estimates of population in non-traditional units (e.g., coastal zones or other environmentally-vulnerable areas). 
    more » « less