Understanding players' mental models are crucial for game designers who wish to successfully integrate player-AI interactions into their game. However, game designers face the difficult challenge of anticipating how players model these AI agents during gameplay and how they may change their mental models with experience. In this work, we conduct a qualitative study to examine how a pair of players develop mental models of an adversarial AI player during gameplay in the multiplayer drawing game iNNk. We conducted ten gameplay sessions in which two players (n = 20, 10 pairs) worked together to defeat an AI player. As a result of our analysis, we uncovered two dominant dimensions that describe players' mental model development (i.e., focus and style). The first dimension describes the focus of development which refers to what players pay attention to for the development of their mental model (i.e., top-down vs. bottom-up focus). The second dimension describes the differences in the style of development, which refers to how players integrate new information into their mental model (i.e., systematic vs. reactive style). In our preliminary framework, we further note how players process a change when a discrepancy occurs, which we observed occur through comparisons (i.e., compare to other systems, compare to gameplay, compare to self). We offer these results as a preliminary framework for player mental model development to help game designers anticipate how different players may model adversarial AI players during gameplay.
more »
« less
Adversarial Contention Resolution Games
We study contention resolution (CR) on a shared channel modelled as a game with selfish players. There are n agents and the adversary chooses some k smaller than n of them as players. Each participating player in a CR game has a packet to transmit. A transmission is successful if it is performed as the only one at a round. Each player aims to minimize its packet latency. We introduce the notion of adversarial equilibrium (AE), which incorporates adversarial selection of players. We develop efficient deterministic communication algorithms that are also AE. We characterize the price of anarchy in the CR games with respect to AE.
more »
« less
- Award ID(s):
- 2131538
- PAR ID:
- 10466603
- Publisher / Repository:
- International Joint Conferences on Artificial Intelligence Organization
- Date Published:
- ISBN:
- 978-1-956792-03-4
- Page Range / eLocation ID:
- 2598 to 2606
- Format(s):
- Medium: X
- Location:
- Macau, SAR China
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Consider a set of n players. We suppose that each game involves two players, that there is some unknown player who wins each game it plays with a probability greater than 1/2, and that our objective is to determine this best player. Under the requirement that the policy employed guarantees a correct choice with a probability of at least some specified value, we look for a policy that has a relatively small expected number of games played before decision. We consider this problem both under the assumption that the best player wins each game with a probability of at least some specified value >1/2, and under a Bayesian assumption that the probability that player i wins a game against player j is its value divided by the sum of the values, where the values are the unknown values of n independent and identically distributed exponential random variables. In the former case, we propose a policy where chosen pairs play a match that ends when one of them has had a specified number of wins more than the other; in the latter case, we propose a Thompson sampling type rule.more » « less
-
We release FOOLMETWICE (FM2 for short), a large dataset of challenging entailment pairs collected through a fun multi-player game. Gamification encourages adversarial examples, drastically lowering the number of examples that can be solved using “shortcuts” compared to other entailment datasets. Players are presented with two tasks. The first task asks the player to write a plausible claim based on the evidence from a Wikipedia page. The second one shows two plausible claims written by other players, one of which is false, and the goal is to identify it before the time runs out. Players “pay” to see clues retrieved from the evidence pool: the more evidence the player needs, the harder the claim. Game-play between motivated players leads to diverse strategies for crafting claims, such as temporal inference and diverting to unrelated evidence, and results in higher quality data for the entailment and evidence retrieval tasks. We open source the dataset and game code.more » « less
-
We consider computational games, sequences of games G = (G1,G2,...) where, for all n, Gn has the same set of players. Computational games arise in electronic money systems such as Bitcoin, in cryptographic protocols, and in the study of generative adversarial networks in machine learning. Assuming that one-way functions exist, we prove that there is 2-player zero-sum computational game G such that, for all n, the size of the action space in Gn is polynomial in n and the utility function in Gn is computable in time polynomial in n, and yet there is no ε-Nash equilibrium if players are restricted to using strategies computable by polynomial-time Turing machines, where we use a notion of Nash equilibrium that is tailored to computational games. We also show that an ε-Nash equilibrium may not exist if players are constrained to perform at most T computational steps in each of the games in the sequence. On the other hand, we show that if players can use arbitrary Turing machines to compute their strategies, then every computational game has an ε-Nash equilibrium. These results may shed light on competitive settings where the availability of more running time or faster algorithms can lead to a “computational arms race”, precluding the existence of equilibrium. They also point to inherent limitations of concepts such as “best response” and Nash equilibrium in games with resource-bounded players.more » « less
-
We formulate a mean field game where each player stops a privately observed Brownian motion with absorption. Players are ranked according to their level of stopping and rewarded as a function of their relative rank. There is a unique mean field equilibrium, and it is shown to be the limit of associated n-player games. Conversely, the mean field strategy induces n-player ε-Nash equilibria for any continuous reward function—but not for discontinuous ones. In a second part, we study the problem of a principal who can choose how to distribute a reward budget over the ranks and aims to maximize the performance of the median player. The optimal reward design (contract) is found in closed form, complementing the merely partial results available in the n-player case. We then analyze the quality of the mean field design when used as a proxy for the optimizer in the n-player game. Surprisingly, the quality deteriorates dramatically as n grows. We explain this with an asymptotic singularity in the induced n-player equilibrium distributions. Funding: M. Nutz is supported by an Alfred P. Sloan Fellowship and the Division of Mathematical Sciences of the National Science Foundation [Grants DMS-1812661 and DMS-2106056]. Y. Zhang is supported in part by the Natural Sciences and Engineering Research Council of Canada [NSERC Discovery Grant RGPIN-2020-06290].more » « less
An official website of the United States government
