Einstein’s general theory of relativity from 19151remains the most successful description of gravitation. From the 1919 solar eclipse2to the observation of gravitational waves3, the theory has passed many crucial experimental tests. However, the evolving concepts of dark matter and dark energy illustrate that there is much to be learned about the gravitating content of the universe. Singularities in the general theory of relativity and the lack of a quantum theory of gravity suggest that our picture is incomplete. It is thus prudent to explore gravity in exotic physical systems. Antimatter was unknown to Einstein in 1915. Dirac’s theory4appeared in 1928; the positron was observed5in 1932. There has since been much speculation about gravity and antimatter. The theoretical consensus is that any laboratory mass must be attracted6by the Earth, although some authors have considered the cosmological consequences if antimatter should be repelled by matter7–10. In the general theory of relativity, the weak equivalence principle (WEP) requires that all masses react identically to gravity, independent of their internal structure. Here we show that antihydrogen atoms, released from magnetic confinement in the ALPHA-g apparatus, behave in a way consistent with gravitational attraction to the Earth. Repulsive ‘antigravity’ is ruled out in this case. This experiment paves the way for precision studies of the magnitude of the gravitational acceleration between anti-atoms and the Earth to test the WEP.
more » « less- PAR ID:
- 10466773
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Nature
- Date Published:
- Journal Name:
- Nature
- Volume:
- 621
- Issue:
- 7980
- ISSN:
- 0028-0836
- Page Range / eLocation ID:
- 716 to 722
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The huge amounts of undetected and exotic dark matter and dark energy needed to make general relativity work on large scales argue that we should investigate modifications of gravity. The only stable, metric-based and invariant alternative to general relativity is f(R) models. These models can explain primordial inflation, but they cannot dispense with either dark matter or dark energy. I advocate nonlocal modifications of gravity, not as new fundamental theories but rather as the gravitational vacuum polarization engendered by infrared quanta produced during primordial inflation. I also discuss some of the many objections which have been raised to this idea.more » « less
-
null (Ed.)We propose a method by which one could use modified antimatter gravity experiments in order to perform a high-precision test of antimatter charge neutrality. The proposal is based on the application of a strong, external, vertically oriented electric field during an antimatter free-fall gravity experiment in the gravitational field of the Earth. The proposed experimental setup has the potential to drastically improve the limits on the charge-asymmetry parameter ϵ¯q of antimatter. On the theoretical side, we analyze possibilities to describe a putative charge-asymmetry of matter and antimatter, proportional to the parameters ϵq and ϵ¯q, by Lagrangian methods. We found that such an asymmetry could be described by four-dimensional Lorentz-invariant operators that break CPT without destroying the locality of the field theory. The mechanism involves an interaction Lagrangian with field operators decomposed into particle or antiparticle field contributions. Our Lagrangian is otherwise Lorentz, as well as PT invariant. Constraints to be derived on the parameter ϵ¯q do not depend on the assumed theoretical model.more » « less
-
We construct a notion of teleparallelization for Newton–Cartan theory, and show that the teleparallel equivalent of this theory is Newtonian gravity; furthermore, we show that this result is consistent with teleparallelization in general relativity, and can be obtained by null-reducing the teleparallel equivalent of a five-dimensional gravitational wave solution. This work thus strengthens substantially the connections between four theories: Newton–Cartan theory, Newtonian gravitation theory, general relativity, and teleparallel gravity.more » « less
-
It is possible that both the classical description of spacetime and the rules of quantum field theory emerge from a more-fundamental structure of physical law. Pregeometric frameworks transfer some of the puzzles of quantum gravity to a semiclassical arena where those puzzles pose less of a challenge. However, in order to provide a satisfactory description of quantum gravity, a semiclassical description must emerge and contain in its description a macroscopic spacetime geometry, dynamical matter, and a gravitational interaction consistent with general relativity at long distances. In this essay, we argue that a framework that includes a stochastic origin for quantum field theory can provide both the emergence of classical spacetime and a quantized gravitational interaction.more » « less
-
Despite being the dominant force of nature on large scales, gravity remains relatively elusive to precision laboratory experiments. Atom interferometers are powerful tools for investigating, for example, Earth’s gravity, the gravitational constant, deviations from Newtonian gravity and general relativity. However, using atoms in free fall limits measurement time to a few seconds, and much less when measuring interactions with a small source mass. Recently, interferometers with atoms suspended for 70 s in an optical-lattice mode filtered by an optical cavity have been demonstrated. However, the optical lattice must balance Earth’s gravity by applying forces that are a billionfold stronger than the putative signals, so even tiny imperfections may generate complex systematic effects. Thus, lattice interferometers have yet to be used for precision tests of gravity. Here we optimize the gravitational sensitivity of a lattice interferometer and use a system of signal inversions to suppress and quantify systematic efects. We measure the attraction of a miniature source mass to be amass = 33.3 ± 5.6stat ± 2.7syst nm s−2, consistent with Newtonian gravity, ruling out ‘screened ffth force’ theories3,15,16 over their natural parameter space. The overall accuracy of 6.2 nm s−2 surpasses by more than a factor of four the best similar measurements with atoms in free fall. Improved atom cooling and tilt-noise suppression may further increase sensitivity for investigating forces at sub-millimetre ranges, compact gravimetry, measuring the gravitational Aharonov–Bohm effect and the gravitational constant, and testing whether the gravitational field has quantum properties.more » « less