In complex, polycentric environmental governance systems, actors may choose to collaborate with one another to reduce their collective vulnerability and enhance system function. However, collaboration can be costly, and little evidence exists for how particular collaborative forums impact the broader governance system in which they are embedded. To address this gap, we investigate the role of intermediate collaborative forums, which support collaboration among a subset of system actors, in polycentric governance systems. Empirically, we analyze the structural and functional role of an intermediate collaborative forum called the Arizona Municipal Water Users Association (AMWUA) within the municipal surface water governance network for the Phoenix Metropolitan Area (PMA) in Arizona, United States. To do this, we draw from 21 interviews with water professionals in the PMA, which we analyze through a combination of network analysis and qualitative coding. We find that AMWUA facilitates strong bonding capacities among members, allowing for streamlined bridging to the rest of the network that enhances information processing and advocacy of member needs. Our findings advance theory on the role of collaboration in polycentric systems and inform the design of collaborative institutions to improve environmental governance.
Collaborative governance has emerged as a promising approach for addressing complex water sustainability issues, with purported benefits from enhanced democracy to improved environmental outcomes. Collaborative processes are often assumed to be inherently more equitable than traditional governance approaches due to their goal of engaging diverse actors in the development of policy and management solutions. However, when collaborative water governance processes ignore issues of politics and power in their design, they risk creating or even exacerbating existing inequities. How, then, can collaborative water governance processes be designed to enhance, rather than undermine, equity? To answer this question, we first conduct an extensive review of the collaborative governance literature to identify common design features of collaborative processes, which each present potential benefits and challenges for actualizing equitable collaborative water governance. After critically discussing these design features, we explore how they are executed through two case studies of collaborative water governance in western North America: groundwater governance reform in California and transnational Colorado River Delta governance. In reflecting on these cases, we chart an agenda for future collaborative water governance research and practice that moves beyond engaging diverse actors to promoting equity among them.
This article is categorized under: Human Water > Water Governance Science of Water > Water and Environmental Change Engineering Water > Planning Water
- Award ID(s):
- 2048133
- NSF-PAR ID:
- 10467624
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- WIREs Water
- Volume:
- 11
- Issue:
- 2
- ISSN:
- 2049-1948
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract This paper presents an implementation of Connected Spaces (CxS)—an ambient help seeking interface designed and developed for a project‐based computing classroom. We use actor network theory (ANT) to provide an underutilized posthumanist lens to understand the creation of collaborative connections in this Computational Action‐based implementation. Posthumanism offers an emerging and critical extension to sociocultural perspectives on understanding learning, by pushing us to decenter the human, and consider the active roles that human and non‐human entities play in learning environments by actively shaping each other. We analyse how students in this class adjusted their help‐seeking and collaborative habits following the introduction of CxS, a tool designed to foster (more inter‐group) collaboration. ANT proposes generalized symmetry—a principle of considering human, non‐human and more than human entities with equivalent and comparable agency, leading to describing phenomena as networks of actors in different evolving relationships with each other. Analysing collaborative interactions as fostered by CxS using an ANT approach supports design‐based research—an iterative design revision process highlighting understandings about design as well as learning—by providing a temporal and informative lens into the relationship between actors and tools within the environment. Our key findings include a framing of technologies in classrooms as bridging
agentic gaps between students and becoming actors engaging in different behaviours; learners enacting new agencies through technologies (for instance a more comfortable non‐intrusive help seeker), and the need for voicing and teachers to connect help networks in CxS equipped classrooms.Practitioner notes What is already known about this topic
Collaborative learning is a valuable skill and practice; opportunities to mentor others are critical in empowering minoritized learners, especially in STEM and computing disciplines.
School norms solidify a power and expertise hierarchy between teachers and learners and fail to productively support learners in learning from each other.
Additionally, lack of awareness about peers' knowledge is a common hindrance in students knowing who to ask for help and how.
What this paper adds
An example of a designed interface called Connected Spaces with potential to foster more inter‐student collaboration, especially outside of mandated within‐group collaboration—in the form of cross‐group help seeking and help giving.
A design based research study using actor network theory highlighting the limitations of Connected Spaces in sparking notable behaviour change among students by itself but being retooled as a teacher support tool in enabling cross‐group collaborations.
Presenting conceptions of collaboration through technologies as bridging agentic gaps and acting with new agencies in performing help‐seeking related actions.
Provoking the idea of testing emerging technologies in classrooms along with sharing our analyses and reflections with the classroom as a key idea in computing education—surfacing the gap between designed intentions and the different kinds of extra social work needed in the on‐ground success of different technologies.
Implications for practice and/or policy
Designers and researchers should create and test more interfaces alongside teachers across different classrooms and contexts aimed at supporting different kinds of voluntary collaborative interactions.
Curricula, standards and school practices should further center providing students with opportunities to engage as mentors and build communities of learning across disciplines to empower minoritized students.
Researchers engaging in design based research should consider using more posthumanist lenses to examine educational technologies and how they affect change in learning environments.
-
Abstract Energy transitions are reshaping hydrosocial relations. How they will be reshaped, however, depends on location and water's material relationship to other resources and industrial activities embedded within energy transitions. To highlight this, we focus on three different resources—coal, natural gas, and lithium—to signal how the water–energy nexus will be reworked in a transition away from fossil fuels. We examine the water–coal nexus as an example of a resource relationship that is transitioning
out , or that is being moved away from in the green energy transition. Natural gas represents the “bridge fuel” usedthrough the transition. Lithium illustrates a resourceinside the green transition, as it is a fundamental material for green technologiesin the transition to a low‐carbon future. Coal, natural gas, and lithium each have their own material impacts to water resources that stem from their industrial lifecycle and different implications for communities shaped by coal, natural gas, and lithium activities. To explore this, we review each of these resources' connection to water, their legal and regulatory dimensions, and their impact on communities and water justice. We argue that the energy transition is also a hydrosocial transition that will create uneven water‐related benefits and burdens. To maximize sustainability and equity, efforts to decarbonize energy systems must examine the localized, place‐based hydrosocial relations that differentially affect communities.This article is categorized under:
Engineering Water > Planning Water
Human Water > Water Governance
Human Water > Rights to Water
-
Abstract River flows connect people, places, and other forms of life, inspiring and sustaining diverse cultural beliefs, values, and ways of life. The concept of environmental flows provides a framework for improving understanding of relationships between river flows and people, and for supporting those that are mutually beneficial. Nevertheless, most approaches to determining environmental flows remain grounded in the biophysical sciences. The newly revised Brisbane Declaration and Global Action Agenda on Environmental Flows (2018) represents a new phase in environmental flow science and an opportunity to better consider the co‐constitution of river flows, ecosystems, and society, and to more explicitly incorporate these relationships into river management. We synthesize understanding of relationships between people and rivers as conceived under the renewed definition of environmental flows. We present case studies from Honduras, India, Canada, New Zealand, and Australia that illustrate multidisciplinary, collaborative efforts where recognizing and meeting diverse flow needs of human populations was central to establishing environmental flow recommendations. We also review a small body of literature to highlight examples of the diversity and interdependencies of human‐flow relationships—such as the linkages between river flow and human well‐being, spiritual needs, cultural identity, and sense of place—that are typically overlooked when environmental flows are assessed and negotiated. Finally, we call for scientists and water managers to recognize the diversity of ways of knowing, relating to, and utilizing rivers, and to place this recognition at the center of future environmental flow assessments.
This article is categorized under:
Water and Life > Conservation, Management, and Awareness
Human Water > Water Governance
Human Water > Water as Imagined and Represented
-
Abstract Artificial intelligence (AI) can enhance teachers' capabilities by sharing control over different parts of learning activities. This is especially true for complex learning activities, such as dynamic learning transitions where students move between individual and collaborative learning in un‐planned ways, as the need arises. Yet, few initiatives have emerged considering how shared responsibility between teachers and AI can support learning and how teachers' voices might be included to inform design decisions. The goal of our article is twofold. First, we describe a secondary analysis of our co‐design process comprising six design methods to understand how teachers conceptualise sharing control with an AI co‐orchestration tool, called
Pair‐Up . We worked with 76 middle school math teachers, each taking part in one to three methods, to create a co‐orchestration tool that supports dynamic combinations of individual and collaborative learning using two AI‐based tutoring systems. We leveraged qualitative content analysis to examine teachers' views about sharing control withPair‐Up , and we describe high‐level insights about the human‐AI interaction, including control, trust, responsibility, efficiency, and accuracy. Secondly, we use our results as an example showcasing how human‐centred learning analytics can be applied to the design of human‐AI technologies and share reflections for human‐AI technology designers regarding the methods that might be fruitful to elicit teacher feedback and ideas. Our findings illustrate the design of a novel co‐orchestration tool to facilitate the transitions between individual and collaborative learning and highlight considerations and reflections for designers of similar systems.Practitioner notes What is already known about this topic:
Artificial Intelligence (AI) can help teachers facilitate complex classroom activities, such as having students move between individual and collaborative learning in unplanned ways.
Designers should use human‐centred design approaches to give teachers a voice in deciding what AI might do in the classroom and if or how they want to share control with it.
What this paper adds:
Presents teacher views about how they want to share control with AI to support students moving between individual and collaborative learning.
Describes how we adapted six design methods to design AI features.
Illustrates a complete, iterative process to create human‐AI interactions to support teachers as they facilitate students moving from individual to collaborative learning.
Implications for practice:
We share five implications for designers that teachers highlighted as necessary when designing AI‐features, including control, trust, responsibility, efficiency and accuracy.
Our work also includes a reflection on our design process and implications for future design processes.