skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Beyond engagement: Enhancing equity in collaborative water governance
Abstract Collaborative governance has emerged as a promising approach for addressing complex water sustainability issues, with purported benefits from enhanced democracy to improved environmental outcomes. Collaborative processes are often assumed to be inherently more equitable than traditional governance approaches due to their goal of engaging diverse actors in the development of policy and management solutions. However, when collaborative water governance processes ignore issues of politics and power in their design, they risk creating or even exacerbating existing inequities. How, then, can collaborative water governance processes be designed to enhance, rather than undermine, equity? To answer this question, we first conduct an extensive review of the collaborative governance literature to identify common design features of collaborative processes, which each present potential benefits and challenges for actualizing equitable collaborative water governance. After critically discussing these design features, we explore how they are executed through two case studies of collaborative water governance in western North America: groundwater governance reform in California and transnational Colorado River Delta governance. In reflecting on these cases, we chart an agenda for future collaborative water governance research and practice that moves beyond engaging diverse actors to promoting equity among them. This article is categorized under:Human Water > Water GovernanceScience of Water > Water and Environmental ChangeEngineering Water > Planning Water  more » « less
Award ID(s):
2048133
PAR ID:
10467624
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
WIREs Water
Volume:
11
Issue:
2
ISSN:
2049-1948
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In complex, polycentric environmental governance systems, actors may choose to collaborate with one another to reduce their collective vulnerability and enhance system function. However, collaboration can be costly, and little evidence exists for how particular collaborative forums impact the broader governance system in which they are embedded. To address this gap, we investigate the role of intermediate collaborative forums, which support collaboration among a subset of system actors, in polycentric governance systems. Empirically, we analyze the structural and functional role of an intermediate collaborative forum called the Arizona Municipal Water Users Association (AMWUA) within the municipal surface water governance network for the Phoenix Metropolitan Area (PMA) in Arizona, United States. To do this, we draw from 21 interviews with water professionals in the PMA, which we analyze through a combination of network analysis and qualitative coding. We find that AMWUA facilitates strong bonding capacities among members, allowing for streamlined bridging to the rest of the network that enhances information processing and advocacy of member needs. Our findings advance theory on the role of collaboration in polycentric systems and inform the design of collaborative institutions to improve environmental governance. 
    more » « less
  2. Abstract Energy transitions are reshaping hydrosocial relations. How they will be reshaped, however, depends on location and water's material relationship to other resources and industrial activities embedded within energy transitions. To highlight this, we focus on three different resources—coal, natural gas, and lithium—to signal how the water–energy nexus will be reworked in a transition away from fossil fuels. We examine the water–coal nexus as an example of a resource relationship that is transitioningout, or that is being moved away from in the green energy transition. Natural gas represents the “bridge fuel” usedthroughthe transition. Lithium illustrates a resourceinsidethe green transition, as it is a fundamental material for green technologiesinthe transition to a low‐carbon future. Coal, natural gas, and lithium each have their own material impacts to water resources that stem from their industrial lifecycle and different implications for communities shaped by coal, natural gas, and lithium activities. To explore this, we review each of these resources' connection to water, their legal and regulatory dimensions, and their impact on communities and water justice. We argue that the energy transition is also a hydrosocial transition that will create uneven water‐related benefits and burdens. To maximize sustainability and equity, efforts to decarbonize energy systems must examine the localized, place‐based hydrosocial relations that differentially affect communities. This article is categorized under:Engineering Water > Planning WaterHuman Water > Water GovernanceHuman Water > Rights to Water 
    more » « less
  3. Abstract Centralized water infrastructure has, over the last century, brought safe and reliable drinking water to much of the world. But climate change, combined with aging and underfunded infrastructure, is increasingly testing the limits of—and reversing gains made by—this approach. To address these growing strains and gaps, we must assess and advance alternatives to centralized water provision and sanitation. The water literature is rife with examples of systems that are neither centralized nor networked, yet meet water needs of local communities in important ways, including: informal and hybrid water systems, decentralized water provision, community‐based water management, small drinking water systems, point‐of‐use treatment, small‐scale water vendors, and packaged water. Our work builds on these literatures by proposing a convergence approach that can integrate and explore the benefits and challenges of modular, adaptive, and decentralized (“MAD”) water provision and sanitation, often foregrounding important advances in engineering technology. We further provide frameworks to evaluate justice, economic feasibility, governance, human health, and environmental sustainability as key parameters of MAD water system performance. This article is categorized under:Engineering Water > Water, Health, and SanitationHuman Water > Water GovernanceEngineering Water > Sustainable Engineering of Water 
    more » « less
  4. Abstract Growing global food demands place major strains on water resources, including quality impairments and increased water scarcity. Drawing on the largely separate bodies of literature on externalities and technological innovation, this article develops a dynamic framework to explore the long‐term impacts of alternative policy approaches to the agricultural impacts on water resources. Environmental policies, which focus on correcting environmental externalities, lead to an overall gain because costs to farmers are more than offset by reduced environmental damages. Technology policies, which direct public investments into agricultural eco‐innovations, lead to benefits for farmers as well as the environment. Joint implementation of both types of policies leads to the largest overall gain. In principle, a technology policy alone could have greater environmental benefits than an environmental policy alone. This outcome is most likely in cases where the productivity effect of new technology is large and the cost of research is low. Recommendations for research managersAs an alternative to traditional environmental policy, investments in research can provide win–win solutions that benefit the environment and agricultural producers.Conceivably, eco‐innovations could lead to environmental conditions that are better than those achieved by environmental policy alone.Adding research investments to existing environmental policy would lead to further improvements in environmental quality while also benefitting farmers.Unlike environmental policies that are perceived to impose costs on agriculture, technology policies impart benefits to farmers and are less likely to face political opposition from industry.Technology policies are likely to be the most effective when eco‐innovation leads to technologies that meaningfully reduce environmental impacts and also raise farm productivity. 
    more » « less
  5. Abstract As a key ingredient of batteries for electric vehicles (EVs), lithium plays a significant role in climate change mitigation, but lithium has considerable impacts on water and society across its life cycle. Upstream extraction methods—including open‐pit mining, brine evaporation, and novel direct lithium extraction (DLE)—and downstream processes present different impacts on both the quantity and quality of water resources, leading to water depletion and contamination. Regarding upstream extraction, it is critical for a comprehensive assessment of lithium's life cycle to include cumulative impacts related not only to freshwater, but also mineralized or saline groundwater, also known as brine. Legal frameworks have obscured social and ecological impacts by treating brine as a mineral rather than water in regulation of lithium extraction through brine evaporation. Analysis of cumulative impacts across the lifespan of lithium reveals not only water impacts in conventional open‐pit mining and brine evaporation, but also significant freshwater needs for DLE technologies, as well as burdens on fenceline communities related to wastewater in processing, chemical contaminants in battery manufacturing, water use for cooling in energy storage, and water quality hazards in recycling. Water analysis in lithium life cycle assessments (LCAs) tends to exclude brine and lack hydrosocial context on the environmental justice implications of water use by life cycle stage. New research directions might benefit from taking a more community‐engaged and cradle‐to‐cradle approach to lithium LCAs, including regionalized impact analysis of freshwater use in DLE, as well as wastewater pollution, cooling water, and recycling hazards from downstream processes. This article is categorized under:Human Water > Human WaterHuman Water > Water GovernanceHuman Water > Water as Imagined and RepresentedScience of Water > Water and Environmental Change 
    more » « less