skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Computationally Guided Synthesis of MXenes by Dry Selective Extraction
Abstract

MXenes are a rapidly growing family of 2D transition metal carbides and nitrides that are promising for various applications, including energy storage and conversion, electronics, and healthcare. Hydrofluoric‐acid‐based etchants are typically used for large‐scale and high‐throughput synthesis of MXenes, which also leads to a mixture of surface terminations that impede MXene properties. Herein, a computational thermodynamic model with experimental validation is presented to explore the feasibility of fluorine‐free synthesis of MXenes with uniform surface terminations by dry selective extraction (DSE) from precursor MAX phases using iodine vapors. A range of MXenes and respective precursor compositions are systematically screened using first‐principles calculations to find candidates with high phase stability and low etching energy. A thermodynamic model based on the “CALculation of PHAse Diagrams” (CALPHAD) approach is further demonstrated, using Ti3C2I2as an example, to assess the Gibbs free energy of the DSE reaction and the state of the byproducts as a function of temperature and pressure. Based on the assessment, the optimal synthesis temperature and vapor pressure are predicted and further verified by experiments. This work opens an avenue for scalable, fluorine‐free dry synthesis of MXenes with compositions and surface chemistries that are not accessible using wet chemical etching.

 
more » « less
Award ID(s):
2334275
PAR ID:
10467632
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
35
Issue:
45
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Surface chemistry of MXenes is of great interest as the terminations can define the intrinsic properties of this family of materials. The diverse and tunable terminations also distinguish MXenes from many other 2D materials. Conventional fluoride‐containing reagents etching approaches resulted in MXenes with mixed fluoro‐, oxo‐, and hydroxyl surface groups. The relatively strong chemical bonding of MXenes’ surface metal atoms with oxygen and fluorine makes post‐synthetic covalent surface modifications of such MXenes unfavorable. In this minireview, we focus on the recent advances in MXenes with uniform surface terminations. Unconventional methods, including Lewis acidic molten salt etching (LAMS) and bottom‐up direct synthesis, have been proven successful in producing halide‐terminated MXenes. These synthetic strategies have opened new possibilities for MXenes because weaker surface chemical bonds in halide‐terminated MXenes facilitate post‐synthetic covalent surface modifications. Both computational and experimental results on surface termination‐dependent properties are summarized and discussed. Finally, we offer our perspective on the opportunities and challenges in this exciting research field.

     
    more » « less
  2. Abstract

    Surface chemistry of MXenes is of great interest as the terminations can define the intrinsic properties of this family of materials. The diverse and tunable terminations also distinguish MXenes from many other 2D materials. Conventional fluoride‐containing reagents etching approaches resulted in MXenes with mixed fluoro‐, oxo‐, and hydroxyl surface groups. The relatively strong chemical bonding of MXenes’ surface metal atoms with oxygen and fluorine makes post‐synthetic covalent surface modifications of such MXenes unfavorable. In this minireview, we focus on the recent advances in MXenes with uniform surface terminations. Unconventional methods, including Lewis acidic molten salt etching (LAMS) and bottom‐up direct synthesis, have been proven successful in producing halide‐terminated MXenes. These synthetic strategies have opened new possibilities for MXenes because weaker surface chemical bonds in halide‐terminated MXenes facilitate post‐synthetic covalent surface modifications. Both computational and experimental results on surface termination‐dependent properties are summarized and discussed. Finally, we offer our perspective on the opportunities and challenges in this exciting research field.

     
    more » « less
  3. Abstract

    A comprehensive study on the prototype solid solution phase carbonitride MXene Ti3CN is conducted using nuclear magnetic resonance, electron spin resonance, total and quasi‐elastic neutron scattering, combined with density functional theory‐based electronic structure and molecular dynamic calculations. The combination of experiment and theory lead toward rational atomic structural models of Ti3CN. The remnant Al ions from the etching process significantly tune the interlayer spacing, distinct from the more typical MXene, Ti3C2, prepared similarly. Neutron scattering indicates the surface terminations of Ti3CN display high oxygen and fluorine concentrations and rather low hydroxyl and hydrogen concentrations. Calculations show that the structure including both the residual Al ions and mixed surface terminations give the best agreement with the measurements. The water molecules in Ti3CN are highly immobile, in strong contrast to those in Ti3C2. The analysis of the electronic structure suggests that the nitride MXene displays higher conductivity than the carbides. The absence of hydroxyl groups in terminations, the solid‐solution in the anion sites, the remnants within layers, and immobile water altogether make the carbonitrides a unique series in the MXene family, implying a further exploration of their exotic properties and applications in energy storage.

     
    more » « less
  4. null (Ed.)
    Two-dimensional materials based on transition metal carbides have been intensively studied due to their unique properties including metallic conductivity, hydrophilicity and structural diversity and have shown a great potential in several applications, for example, energy storage, sensing and optoelectronics. While MXenes based on magnetic transition elements show interesting magnetic properties, not much is known about the magnetic properties of titanium-based MXenes. Here, we measured the magnetic properties of Ti3C2Tx MXenes synthesized by different chemical etching conditions such as etching temperature and time. Our magnetic measurements were performed in a superconducting quantum interference device (SQUID) vibrating sample. These data suggest that there is a paramagnetic-antiferromagnetic (PM-AFM) phase transition and the transition temperature depends on the synthesis procedure of MXenes. Our observation indicates that the magnetic properties of these MXenes can be tuned by the extent of chemical etching, which can be beneficial for the design of MXenes-based spintronic devices. 
    more » « less
  5. Abstract

    Since their discovery in 2011, the number of 2D transition metal carbides and nitrides (MXenes) has steadily increased. Currently more than 40 MXene compositions exist. The ultimate number is far greater and in time they may develop into the largest family of 2D materials known. MXenes’ unique properties, such as their metal‐like electrical conductivity reaching ≈20 000 S cm−1, render them quite useful in a large number of applications, including energy storage, optoelectronic, biomedical, communications, and environmental. The number of MXene papers and patents published has been growing quickly. The first MXene generation is synthesized using selective etching of metal layers from the MAX phases, layered transition metal carbides and carbonitrides using hydrofluoric acid. Since then, multiple synthesis approaches have been developed, including selective etching in a mixture of fluoride salts and various acids, non‐aqueous etchants, halogens, and molten salts, allowing for the synthesis of new MXenes with better control over their surface chemistries. Herein, a brief historical overview of the first 10 years of MXene research and a perspective on their synthesis and future development are provided. The fact that their production is readily scalable in aqueous environments, with high yields bodes well for their commercialization.

     
    more » « less