Samarium diiodide (SmI2) is a privileged, single-electron reductant deployed in diverse synthetic settings. However, generalizable methods for catalytic turnover remain elusive because of the well-known challenge associated with cleaving strong SmIII–O bonds. Prior efforts have focused on the use of highly reactive oxophiles to enable catalyst turnover. However, such approaches give rise to complex catalyst speciation and intrinsically limit the synthetic scope. Herein, we leveraged a mild and selective protonolysis strategy to achieve samarium-catalyzed, intermolecular reductive cross-coupling of ketones and acrylates with broad scope. The modularity of our approach allows rational control of selectivity based on solvent, p
Samarium diiodide (SmI2) is widely used as a strong one‐electron reducing agent and is often employed to form C−C bonds in complex systems. Despite their utility, SmI2and related salts suffer from several drawbacks that render the use of Sm reducing agents in large‐scale synthesis impractical. Here, we report factors influencing the electrochemical reduction of Sm(III) to Sm(II), towards the goal of electrocatalytic Sm(III) reduction. We probe the effect of supporting electrolyte, electrode material, and Sm precursor on Sm(II)/(III) redox and on the reducing power of the Sm species. We find that the coordination strength of the counteranion of the Sm salt affects the reversibility and redox potential of the Sm(II)/(III) couple and establish that the counteranion primarily determines the reducibility of Sm(III). Electrochemically generated SmI2performs similarly to commercial SmI2solutions in a proof‐of‐concept reaction. The results will provide fundamental insight to facilitate the development of Sm‐electrocatalytic reactions.
more » « less- Award ID(s):
- 2002158
- PAR ID:
- 10467829
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Chemistry – A European Journal
- Volume:
- 29
- Issue:
- 46
- ISSN:
- 0947-6539
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
K a(whereK ais the acid dissociation constant), and the samarium coordination sphere and provides a basis for future developments in catalytic and electrocatalytic lanthanide chemistry. -
Abstract Lanthanide triflates have been used to incorporate NdIIIand SmIIIions into the 2.2.2‐cryptand ligand (crypt) to explore their reductive chemistry. The Ln(OTf)3complexes (Ln=Nd, Sm; OTf=SO3CF3) react with crypt in THF to form the THF‐soluble complexes [LnIII(crypt)(OTf)2][OTf] with two triflates bound to the metal encapsulated in the crypt. Reduction of these LnIII‐in‐crypt complexes using KC8in THF forms the neutral LnII‐in‐crypt triflate complexes [LnII(crypt)(OTf)2]. DFT calculations on [NdII(crypt)]2+], the first NdIIcryptand complex, assign a 4f4electron configuration to this ion.
-
Abstract Lanthanide triflates have been used to incorporate NdIIIand SmIIIions into the 2.2.2‐cryptand ligand (crypt) to explore their reductive chemistry. The Ln(OTf)3complexes (Ln=Nd, Sm; OTf=SO3CF3) react with crypt in THF to form the THF‐soluble complexes [LnIII(crypt)(OTf)2][OTf] with two triflates bound to the metal encapsulated in the crypt. Reduction of these LnIII‐in‐crypt complexes using KC8in THF forms the neutral LnII‐in‐crypt triflate complexes [LnII(crypt)(OTf)2]. DFT calculations on [NdII(crypt)]2+], the first NdIIcryptand complex, assign a 4f4electron configuration to this ion.
-
Abstract Exploration of the reduction chemistry of the 2,2’‐bipyridine (bipy) lanthanide metallocene complexes Cp*2LnCl(bipy) and Cp*2Ln(bipy) (Cp* = C5Me5) resulted in the isolation of a series of complexes with unusual composition and structure including complexes with a single Cp* ligand, multiple azide ligands, and bipy ligands with close parallel orientations. These results not only reveal new structural types, but they also show the diverse chemistry displayed by this redox‐active platform. Treatment of Cp*2NdCl(bipy) with excess KC8resulted in the formation of the mono‐Cp* Nd(III) complex, [K(crypt)]2[Cp*Nd(bipy)2],
1 , as well as [K(crypt)][Cp*2NdCl2],2 , and the previously reported [K(crypt)][Cp*2Nd(bipy)]. A mono‐Cp* Lu(III) complex, Cp*Lu(bipy)2,3 , was also found in an attempt to make Cp*2Lu(bipy) from LuCl3, 2 equiv. of KCp*, bipy, and K/KI. Surprisingly, the (bipy)1−ligands in neighboring molecules in the structure of3 are oriented in a parallel fashion with intermolecular C⋅⋅⋅C distances of 3.289(4) Å, which are shorter than the sum of van der Waals radii of two carbon atoms, 3.4 Å. Another product with one Cp* ligand per lanthanide was isolated from the reaction of [K(crypt)][Cp*2Eu(bipy)] with azobenzene, which afforded the dimeric Eu(II) complex, [K(crypt)]2[Cp*Eu(THF)(PhNNPh)]2,4 . Attempts to make4 from the reaction between Cp*2Eu(THF)2and a reduced azobenzene anion generated instead the mixed‐valent Eu(III)/Eu(II) complex, [K(crypt)][Cp*Eu(THF)(PhNNPh)]2,5 , which allows direct comparison with the bimetallic Eu(II) complex4 . Mono‐Cp* complexes of Yb(III) are obtained from reactions of the Yb(II) complex, [K(crypt)][Cp*2Yb(bipy)], with trimethylsilylazide, which afforded the tetra‐azido [K(crypt)]2[Cp*Yb(N3)4],6 , or the di‐azido complex [K(crypt)]2[Cp*Yb(N3)2(bipy)],7 a , depending on the reaction stoichiometry. A mono‐Cp* Yb(III) complex is also isolated from reaction of [K(crypt)][Cp*2Yb(bipy)] with elemental sulfur which forms the mixed polysulfido Yb(III) complex [K(crypt)]2[Cp*Yb(S4)(S5)],8 a . In contrast to these reactions that form mono‐Cp* products, reduction of Cp*2Yb(bipy) with 1 equiv. of KC8in the presence of 18‐crown‐6 resulted in the complete loss of Cp* ligands and the formation of [K(18‐c‐6)(THF)][Yb(bipy)4],9 . The (bipy)1−ligands of9 are arranged in a parallel orientation, as observed in the structure of3 , except in this case this interaction is intramolecular and involves pairs of ligands bound to the same Yb atom. Attempts to reduce further the Sm(II) (bipy)1−complex, Cp*2Sm(bipy) with 2 equiv. of KC8in the presence of excess 18‐crown‐6 led to the isolation of a Sm(III) salt of (bipy)2−with an inverse sandwich Cp* counter‐cation and a co‐crystallized K(18‐c‐6)Cp* unit, [K2(18‐c‐6)2Cp*]2[Cp*2Sm(bipy)]2 ⋅ [K(18‐c‐6)Cp*],10 . -
Abstract Searching for a connection between the two‐electron redox behavior of Group‐14 elements and their possible use as platforms for the photoreductive elimination of chlorine, we have studied the photochemistry of [(
o ‐(Ph2P)C6H4)2GeIVCl2]PtIICl2and [(o ‐(Ph2P)C6H4)2ClGeIII]PtIIICl3, two newly isolated isomeric complexes. These studies show that, in the presence of a chlorine trap, both isomers convert cleanly into the platinum germyl complex [(o ‐(Ph2P)C6H4)2ClGeIII]PtICl with quantum yields of 1.7 % and 3.2 % for the GeIV–PtIIand GeIII–PtIIIisomers, respectively. Conversion of the GeIV–PtIIisomer into the platinum germyl complex is a rare example of a light‐induced transition‐metal/main‐group‐element bond‐forming process. Finally, transient‐absorption‐spectroscopy studies carried out on the GeIII–PtIIIisomer point to a ligand arene–Cl.charge‐transfer complex as an intermediate.