skip to main content


Title: Bhumichula plateau: A remnant high-elevation low-relief surface in the Himalayan thrust belt of western Nepal

The Himalaya is known for dramatically rugged landscapes including the highest mountains in the world. However, there is a limited understanding of the timing of attainment of high elevation and relief formation, especially in the Nepalese Himalaya. Anomalous high-elevation low-relief (HELR) surfaces, which exhibit geomorphic antiquity and are possibly remnants of formerly widespread high-elevation paleosurfaces, provide a unique opportunity to assess the attainment of regional high elevation in the Himalaya. The Bhumichula plateau is one such HELR surface (4300−4800 m) in the western Nepalese Himalayan fold-thrust belt. The Bhumichula plateau is situated in the Dadeldhura klippe (also called the Karnali klippe), an outlier of Greater Himalayan Sequence high-grade metasedimentary/igneous rocks surrounded by structurally underlying Lesser Himalayan Sequence low-grade metasedimentary rocks. We assess the origin of the Bhumichula plateau by combining regional geological relationships and zircon and apatite (U-Th-Sm)/He and apatite fission track thermochronologic ages. The HELR surface truncates pervasive west-southwestward dipping foliations, indicating that it post-dates tilting of rocks in the hanging wall of the Main Central thrust above the Lesser Himalayan duplex. This suggests that the surface originated at high elevation by erosional beveling of thickened, uplifted crust. Exhumation through the ∼180−60 °C thermal window occurred during middle Miocene for samples on the plateau and between middle and late Miocene for rocks along the Tila River, which bounds the north flank of the Bhumichula plateau. Cooling ages along the Tila River are consistent with erosional exhumation generated by early Miocene emplacement of the Main Central (Dadeldhura) thrust sheet, middle Miocene Ramgarh thrust emplacement, and late Miocene growth of the Lesser Himalayan duplex. The most recent middle-late Miocene exhumation took place as the Tila River and its northward flowing tributaries incised upstream, such that the Bhumichula plateau is a remnant of a more extensive HELR paleolandscape. Alpine glaciation lowered relief on the Bhumichula surface, and surface preservation may owe to its relatively durable lithology, gentle structural relief, and elevation range that is above the rainier Lesser Himalaya.

 
more » « less
Award ID(s):
1763432
NSF-PAR ID:
10467842
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Geological Society of America
Date Published:
Journal Name:
GSA Bulletin
ISSN:
0016-7606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    New data from the lower Miocene Dumri Formation of western Nepal document exhumation of the Himalayan fold‐thrust belt and provenance of the Neogene foreland basin system. We employ U‐Pb zircon, Th‐Pb monazite,40Ar/39Ar white mica, and zircon fission track chronometers to detrital minerals to constrain provenance, timing, and rate of exhumation of Himalayan source regions. Clusters of Proterozoic–early Paleozoic (900–400 Ma) Th‐Pb monazite and40Ar/39Ar white mica detrital ages provide evidence for erosion of a Greater Himalayan sequence protolith unaffected by high‐grade Eohimalayan metamorphism. A small population of ~40 Ma cooling ages in detrital white mica grains shows exhumation of low‐grade metamorphic Tethyan Himalayan sequence through the ~350 °C closure temperature along the Tethyan Frontal thrust (proto‐South Tibetan detachment) during the late Eocene. Dumri Formation detritus shows a ~12 Myr time difference between cooling of its source rocks through the ~350 and ~240 °C closure temperatures as recorded by ~40–38 Ma youngest peak cooling ages in40Ar/39Ar detrital white mica and ~28–24 Ma youngest populations in detrital zircon fission track. Exhumation between circa 40 and 28 Ma is consistent with slip and exhumation along the Main Central Thrust. Combined with similar data from northwestern India, our study suggests west‐to‐east spatially variable exhumation rates along strike of the Main Central Thrust. Our data also show an increase in exhumation during middle Miocene–Pliocene time, which is consistent with growth of the Lesser Himalaya duplex.

     
    more » « less
  2. Abstract

    The kinematic and exhumational evolution of the Lesser Himalaya (LH) remains a topic of debate. In NW India, the stratigraphically diverse LH is separated into the inner LH (iLH) of late Paleo‐Mesoproterozoic rocks and the outer LH (oLH) of Cryogenian to Cambrian rocks. Contradictory models regarding the age and structural affinity of the Tons thrust—a prominent structure bounding the oLH and iLH—are grounded in conflicting positions of the oLH prior to Himalayan orogenesis. This study presents new zircon (U‐Th)/He and U‐Pb ages from the thrust belt and foreland basin of NW India that refine the kinematic and exhumational evolution of the LH. Combined cooling ages and foreland provenance data support emplacement and unroofing of the oLH via southward in‐sequence propagation of the Tons thrust by middle Miocene time. This requires that, before India–Asia collision, the oLH was positioned as the southernmost succession of Neoproterozoic–Cambrian strata along the north Indian margin. This is further supported by detrital zircon U‐Pb ages from Cretaceous–Paleogene strata (Singtali Formation) unconformably overlying the oLH, which yield diagnostic Cretaceous detrital zircons correlative with coeval strata in the frontal Himalaya of Nepal. A pulse of rapid exhumation along the Tons thrust front at ~16 Ma was followed by east‐to‐west development of a midcrustal ramp at ~12 Ma which facilitated diachronous iLH duplexing. This duplexing shifted the locus of maximum exhumation northward, eroding away Main Central Thrust hanging wall rocks until the iLH breached the surface at ~9–11 Ma near Nepal and by ~3–7 Ma within the Kullu‐Rampur window.

     
    more » « less
  3. Abstract

    Exhumation and cooling pathways of mid‐crustal metamorphic rocks in the western Nepal Himalaya can be replicated by fold‐thrust belt structures with displacement localized along discrete décollements. New and published muscovite40Ar/39Ar, zircon U‐Th/He, and apatite fission track cooling ages, peak temperature estimates, geologic mapping, and basin data are integrated with thermokinematic forward models to constrain the geometry, kinematics, and rates of shortening in far western Nepal. The best fit to peak temperatures, cooling ages, and basin accumulation data is achieved with a largely in‐sequence kinematic order, with out‐of‐sequence motion on the Ramgarh‐Munsiari thrust. Fast rates (∼20–40 mm/yr) are required during shortening on early, large displacement faults at ∼23–12 Ma and decrease to ∼10–15 mm/yr during formation of the Lesser Himalayan duplex until ∼1 Ma. Thermokinematic models highlight the relationship between peak temperature, geometry, and shortening on the large displacement Main Central and Ramgarh‐Munsiari thrusts. In the thermokinematic models, we observe a relationship between the location of frontal ramps for the faults that displace lower Lesser Himalayan units and the ∼375°C isotherm, immediately before the ramp becomes active. These correlations suggest that temperature exerts a first‐order control on thrust geometry in a hot orogen. Viable models highlight the position of active ramps, kinematic order of faults, timing of fault motion, and reduction in shortening rates that are required to reproduce the surface geology, basin accumulation, peak temperature conditions, and timing of exhumation. Cooling ages are far more sensitive to the age of fault motion than the rate of fault motion.

     
    more » « less
  4. The Bengal Fan is the world’s largest submarine fan deposit by area, and fan sediments preserve a faithful record of Tibetan-Himalayan orogenesis since Early Miocene time. This study uses detrital zircon (U-Th)/He (ZHe) thermochronology, U-Pb and ZHe double-dating, and sediment mixing models to characterize shifts in provenance and erosional history of the Himalaya and Tibet recorded by Bengal Fan sediments from Late Miocene to Late Pleistocene time, with emphasis on the Pliocene-Pleistocene interglacial transition. Zircon grains are collected from sediment cores acquired during IODP Expedition 354 (2015). A total of 157 single zircon grains from 25 samples of sandy and silty turbidites will be analyzed for single ZHe analyses (an average of 8 grains per sample), and ~50 zircon grains will be chosen for double-dating with U-Pb geochronology. In turn, all ZHe results will be compared with large-n (n=300-600) U-Pb age distributions from the same samples. Sediment mixing models will determine potential source regions for individual samples by “unmixing” crystallization and cooling age populations present in each sample. Preliminary results (n=84) show shifts in the range of cooling ages from ~5.9-45 Ma in the Late Miocene, with a single grain at ~233 Ma, to ~2.5-410 Ma in the Late Pliocene, and finally ~0.5-20 Ma in the Early-Middle Pleistocene, with a single grain at ~492 Ma. These results indicate shifts in source contributions from central-East Himalaya in the Late Miocene, to a Lesser and Tethyan Himalaya source in the Late Pliocene, to a predominantly Eastern Tibet and Lhasa terrane source in the Late Pleistocene in tandem with a broad increase in exhumation rates. We attribute these variations in cooling age ranges to change in sediment source terrains for the Ganges and Brahmaputra River system. Ongoing work seeks to further refine sediment mixing models for the Ganges-Brahmaputra-Bengal Fan system in tandem with large-n U-Pb geochronologic efforts. 
    more » « less
  5. Abstract

    Pressure‐temperature (P‐T) conditions and high‐resolution paths from 11 garnet‐bearing rocks collected across Himalayan fault systems exposed along the Bhagirathi River (Uttarakhand, NW India) reveal the tectonic conditions responsible for their growth. A garnet from the Tethyan metasedimentary unit has a 50.3 ± 0.6 Ma (Th‐Pb, ±1σ) monazite inclusion, suggesting that ductile mid‐crustal metamorphism occurred synchronously or soon after (<10 Myr) India‐Asia collision, depending on timing. High‐resolution garnet P‐T paths from the same rock show ∼1 kbar fluctuations in P as T increases over a ∼20°C interval, consistent with a period of erosion. We report garnets from the Main Central Thrust (MCT) hanging wall that have Eocene to Miocene monazite ages, and one garnet yields paths consistent with motion along the Main Himalayan Thrust (MHT) décollement. Most high‐resolution MCT footwall P‐T paths fluctuate in P (±1 kbar) as T increases, consistent with imbrication and paths from equivalent structural assemblages in central Nepal. Like those rocks, MCT footwall (Lesser Himalayan Formation, LHF) monazite ages are Early Miocene (9.3 ± 0.6 Ma) to Pliocene (3.0 ± 0.2 Ma). The results demonstrate the consistency in timing and conditions across the MCT at locations ∼650 km apart. If the present‐day Himalayan tectonic framework has not significantly changed since the Pliocene, the LHF duplex can be considered when attributing seismic events to particular faults. The MHT is undisputedly the significant factor in accommodating Himalayan seismic activity, but MCT footwall faults may explain some shallower hypocenters, without the need for unusual MHT geometries.

     
    more » « less