skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bhumichula plateau: A remnant high-elevation low-relief surface in the Himalayan thrust belt of western Nepal
The Himalaya is known for dramatically rugged landscapes including the highest mountains in the world. However, there is a limited understanding of the timing of attainment of high elevation and relief formation, especially in the Nepalese Himalaya. Anomalous high-elevation low-relief (HELR) surfaces, which exhibit geomorphic antiquity and are possibly remnants of formerly widespread high-elevation paleosurfaces, provide a unique opportunity to assess the attainment of regional high elevation in the Himalaya. The Bhumichula plateau is one such HELR surface (4300−4800 m) in the western Nepalese Himalayan fold-thrust belt. The Bhumichula plateau is situated in the Dadeldhura klippe (also called the Karnali klippe), an outlier of Greater Himalayan Sequence high-grade metasedimentary/igneous rocks surrounded by structurally underlying Lesser Himalayan Sequence low-grade metasedimentary rocks. We assess the origin of the Bhumichula plateau by combining regional geological relationships and zircon and apatite (U-Th-Sm)/He and apatite fission track thermochronologic ages. The HELR surface truncates pervasive west-southwestward dipping foliations, indicating that it post-dates tilting of rocks in the hanging wall of the Main Central thrust above the Lesser Himalayan duplex. This suggests that the surface originated at high elevation by erosional beveling of thickened, uplifted crust. Exhumation through the ∼180−60 °C thermal window occurred during middle Miocene for samples on the plateau and between middle and late Miocene for rocks along the Tila River, which bounds the north flank of the Bhumichula plateau. Cooling ages along the Tila River are consistent with erosional exhumation generated by early Miocene emplacement of the Main Central (Dadeldhura) thrust sheet, middle Miocene Ramgarh thrust emplacement, and late Miocene growth of the Lesser Himalayan duplex. The most recent middle-late Miocene exhumation took place as the Tila River and its northward flowing tributaries incised upstream, such that the Bhumichula plateau is a remnant of a more extensive HELR paleolandscape. Alpine glaciation lowered relief on the Bhumichula surface, and surface preservation may owe to its relatively durable lithology, gentle structural relief, and elevation range that is above the rainier Lesser Himalaya.  more » « less
Award ID(s):
1763432
PAR ID:
10467842
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Geological Society of America
Date Published:
Journal Name:
GSA Bulletin
ISSN:
0016-7606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Cretaceous‐Miocene sedimentary rocks in the Nepalese Lesser Himalaya provide an opportunity to decipher the timing of India‐Asia collision and unroofing history of the Himalayan orogen, which are significant for understanding the growth processes of the Himalayan‐Tibetan orogen. Our new data indicate that detrital zircon ages and whole‐rock Sr‐Nd isotopes in Cretaceous‐Miocene Lesser Himalayan sedimentary rocks underwent two significant changes. First, from the Upper Cretaceous‐Palaeocene Amile Formation to the Eocene Bhainskati Formation, the proportion of late Proterozoic‐early Palaeozoic zircons (quantified by an index of 500–1200 Ma/1600–2800 Ma) increased from nearly 0 to 0.7–1.4, and the percentage of Mesozoic zircons decreased from ca. 14% to 5–12%. The whole‐rock87Sr/86Sr and εNd(t = 0) values changed markedly from 0.732139 and −17.2 for the Amile Formation to 0.718106 and −11.4 for the Bhainskati Formation. Second, from the Bhainskati Formation to the lower‐middle Miocene Dumri Formation, the index of 500–1200 Ma/1600–2800 Ma increased to 2.2–3.7 and the percentage of Mesozoic zircons abruptly decreased to nearly 0. The whole‐rock87Sr/86Sr and εNd(t = 0) values changed significantly to 0.750124 and −15.8 for the Dumri Formation. The εHf(t) values of Early Cretaceous zircons in the Taltung Formation and Amile Formation plot in the U‐Pb‐εHf(t) field of Indian derivation, whereas εHf(t) values of Triassic‐Palaeocene zircons in the Bhainskati Formation demonstrate the arrival of Asian‐derived detritus in the Himalayan foreland basin in the Eocene based on available datasets. Our data indicate that (1) the timing of terminal India‐Asia collision was no later than the early‐middle Eocene in the central Himalaya, and (2) the Greater Himalaya served as a source for the Himalayan foreland basin by the early Miocene. When coupled with previous Palaeocene‐early Eocene provenance records of the Tethyan Himalaya, our new data challenge dual‐stage India‐Asia collision models, such as the Greater India Basin hypothesis and its variants and the arc–continent collision model. 
    more » « less
  2. The Tethyan Himalaya (TH) fold-thrust belt comprises a deformed Neoproterozoic-Cretaceous section of sedimentary rocks that record the early stages of deformation of the Himalayan orogen. In the northwestern Himalaya, rocks at the base of the TH are metamorphosed and are useful for reconstructing the thermal evolution of the Himalaya during initial stages of crustal thickening. Here, we present results of multi-method thermobarometry (thermodynamic modelling, Si in white mica barometry, quartz in garnet barometry, raman spectroscopy of carbonaceous material (RSCM) thermometry) on metasedimentary samples from two transects across the TH, with apparently continuous stratigraphy separated along strike of the orogen by ~40 km. Samples from the Pin Valley region record peak pressure-temperature (P-T) conditions of 0.4-0.5 GPa, 600 °C, suggesting a paleo-geothermal gradient of 30-40 °C/km. These samples are from the base of a continuous ~10-12 km-thick TH section in which the stratigraphically highest units are undeformed, fossil-bearing sedimentary rocks. RSCM thermometry on samples from stratigraphically higher levels of the TH suggest a continuous ~40 °C/km geothermal gradient through the entire TH section in the Pin Valley region. In contrast, previous thermobarometric studies from the Sutlej Valley ~40 km to the east report peak P-T conditions of 0.7-0.8 GPa, 600-650 °C, suggesting a paleo-geothermal gradient of 20-25 °C/km. Our new data indicate significant along-strike variation in peak P-T conditions and paleo-geothermal gradients at the base of the TH. Possible explanations for this along-strike thermobarometric discrepancy include: 1) pre-Himalayan metamorphic assemblages preserved in the TH resulting in erroneous Himalayan peak P-T estimates, 2) along-strike structural differences that resulted in differential burial and exhumation during Himalayan orogenesis, or 3) non-lithostatic pressure during orogenesis. Thermobarometric work on samples from different stratigraphic levels of the basal TH in the Sutlej Valley is in progress to determine paleo-geothermal gradient continuity both across- and along-strike of the orogen. 
    more » « less
  3. Abstract We explore the growth of lower-continental crust by examining the root of the Southern California Batholith, an ~500-km-long, paleo-arc segment of the Mesozoic California arc that lies between the southern Sierra Nevada Batholith and northern Peninsular Ranges Batholith. We focus on the Cucamonga and San Antonio terranes located in the eastern San Gabriel Mountains where the deep root of the Mesozoic arc is exhumed by the Quaternary Cucamonga thrust fault. This lower- to mid-crustal cross section of the arc allows us to investigate (1) the timing and rates of Mesozoic arc construction, (2) mechanisms of sediment incorporation into the lower crust, and (3) the interplay between mantle input and crustal recycling during arc magmatic surges. We use U-Pb detrital zircon geochronology of four quartzites and one metatexite migmatite to investigate the origin of the lower-crustal Cucamonga metasedimentary sequence, and U-Pb zircon petrochronology of 26 orthogneisses to establish the timing of arc magmatism and granulite-facies metamorphism. We find that the Cucamonga metasedimentary sequence shares broad similarities to Sur Series metasedimentary rocks in the Salinia terrane, suggesting that both were deposited in a late Paleozoic to early Mesozoic forearc or intra-arc basin marginal to the Southern California Batholith. This basin was progressively underthrust beneath the arc during the Middle Jurassic to Late Cretaceous and was metamorphosed during two high-grade (>750 °C), metamorphic events at ca. 124 Ma and 89–75 Ma. These metamorphic events were associated with 100 m.y. of arc magmatism that lasted from 175 Ma to 75 Ma and culminated in a magmatic surge from ca. 90 Ma to 75 Ma. Field observations and petrochronology analyses indicate that partial melting of the underthrust Cucamonga metasedimentary rocks was triggered by the emplacement of voluminous, mid-crustal tonalites and granodiorites. Partial melting of the metasedimentary rocks played a subsidiary role relative to mantle input in driving the Late Cretaceous magmatic flare-up event. 
    more » « less
  4. Cooling ages of tectonic blocks between the Yakutat microplate and the Fairweather transform boundary fault reveal exhumation due to strike-slip faulting and subsequent collision into this tectonic corner. The Yakutat and Boundary faults are splay faults that define tectonic panels with bounding faults that have evidence of both reverse and strike-slip motion, and they are parallel to the northern end of the Fairweather fault. Uplift and exhumation simultaneous with strike-slip motion have been significant since the late Miocene. The blocks are part of an actively deforming tectonic corner, as indicated by the ~14–1.5 m of coseismic uplift from the M 8.1 Yakutat Bay earthquake of 1899 and 4 m of strike-slip motion in the M 7.9 Lituya Bay earthquake in 1958 along the Fairweather fault. New apatite (U-Th-Sm)/He (AHe) and zircon (U-Th)/He (ZHe) data reveal that the Boundary block and the Russell Fiord block have different cooling histories since the Miocene, and thus the Boundary fault that separates them is an important tectonic boundary. Upper Cretaceous to Paleocene flysch of the Russell Fiord block experienced a thermal event at 50 Ma, then a relatively long period of burial until the late Miocene when initial exhumation resulted in ZHe ages between 7 and 3 Ma, and then very rapid exhumation in the last 1–1.5 m.y. Exhumation of the Russell Fiord block was accommodated by reverse faulting along the Yakutat fault and the newly proposed Calahonda fault, which is parallel to the Yakutat fault. The Eocene schist of Nunatak Fiord and 54–53 Ma Mount Stamy and Mount Draper granites in the Boundary block have AHe and ZHe cooling ages that indicate distinct and very rapid cooling between ca. 5 Ma and ca. 2 Ma. Rocks of the Chugach Metamorphic Complex to the northeast of the Fairweather fault and in the fault zone were brought up from 10–12 km at extremely high rates (>5 km/m.y.) since ca. 3 Ma, which implies a significant component of dip-slip motion along the Fairweather fault. The adjacent rocks of the Boundary block were exhumed with similar rates and from similar depths during the early Pliocene, when they may have been located 220–250 km farther south near Baranof Island. The profound and significant exhumation of the three tectonic blocks in the last 5 m.y. has probably been driven by uplift and erosional exhumation due to contraction as rocks collide into this tectonic corner. The documented spatial and temporal pattern of exhumation is in agreement with the southward shift of focused exhumation at the St. Elias syntaxial corner and the southeast propagation of the fold-and thrust belt. 
    more » « less
  5. Abstract The northwest-trending transition zone (TZ) in Arizona (southwestern United States) is an ~100-km-wide physiographic province that separates the relatively undeformed southwestern margin of the Colorado Plateau from the hyperextended Basin and Range province to the southwest. The TZ is widely depicted to have been a Late Cretaceous–Paleogene northeast-dipping erosional slope along which Proterozoic rocks were denuded but not significantly deformed. Our multi-method thermochronological study (biotite 40Ar/39Ar, zircon and apatite [U-Th-Sm]/He, and apatite fission track) of Proterozoic rocks in the Bradshaw Mountains of the west-central Arizona TZ reveals relatively rapid cooling (~10 °C/m.y.) from temperatures of >180 °C to <60 °C between ca. 70 and ca. 50 Ma. Given minimal ca. 70–50 Ma upper-crustal shortening in the TZ, we attribute cooling to exhumation driven by northeastward bulldozing of continental lower crust and mantle lithosphere beneath it by the Farallon flat slab. Bulldozing is consistent with contemporaneous (ca. 70–50 Ma) underplating and initial exhumation of Orocopia Schist to the southwest in western Arizona and Mesozoic garnet-clinopyroxenite xenoliths of possible Mojave batholith keel affinity in ca. 25 Ma TZ volcanic rocks. 
    more » « less