skip to main content


Title: Distribution and Evolution of Chorus Waves Modeled by a Neural Network: The Importance of Imbalanced Regression
Abstract

Whistler‐mode chorus waves play an essential role in the acceleration and loss of energetic electrons in the Earth’s inner magnetosphere, with the more intense waves producing the most dramatic effects. However, it is challenging to predict the amplitude of strong chorus waves due to the imbalanced nature of the data set, that is, there are many more non‐chorus data points than strong chorus waves. Thus, traditional models usually underestimate chorus wave amplitudes significantly during active times. Using an imbalanced regressive (IR) method, we develop a neural network model of lower‐band (LB) chorus waves using 7‐year observations from the EMFISIS instrument onboard Van Allen Probes. The feature selection process suggests that the auroral electrojet index alone captures most of the variations of chorus waves. The large amplitude of strong chorus waves can be predicted for the first time. Furthermore, our model shows that the equatorial LB chorus’s spatiotemporal evolution is similar to the drift path of substorm‐injected electrons. We also show that the chorus waves have a peak amplitude at the equator in the source MLT near midnight, but toward noon, there is a local minimum in amplitude at the equator with two off‐equator amplitude peaks in both hemispheres, likely caused by the bifurcated drift paths of substorm injections on the dayside. The IR‐based chorus model will improve radiation belt prediction by providing chorus wave distributions, especially storm‐time strong chorus. Since data imbalance is ubiquitous and inherent in space physics and other physical systems, imbalanced regressive methods deserve more attention in space physics.

 
more » « less
NSF-PAR ID:
10468006
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Space Weather
Volume:
21
Issue:
10
ISSN:
1542-7390
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We review comprehensive observations of electromagnetic ion cyclotron (EMIC) wave-driven energetic electron precipitation using data collected by the energetic electron detector on the Electron Losses and Fields InvestigatioN (ELFIN) mission, two polar-orbiting low-altitude spinning CubeSats, measuring 50-5000 keV electrons with good pitch-angle and energy resolution. EMIC wave-driven precipitation exhibits a distinct signature in energy-spectrograms of the precipitating-to-trapped flux ratio: peaks at >0.5 MeV which are abrupt (bursty) (lasting ∼17 s, or$\Delta L\sim 0.56$ΔL0.56) with significant substructure (occasionally down to sub-second timescale). We attribute the bursty nature of the precipitation to the spatial extent and structuredness of the wave field at the equator. Multiple ELFIN passes over the same MLT sector allow us to study the spatial and temporal evolution of the EMIC wave - electron interaction region. Case studies employing conjugate ground-based or equatorial observations of the EMIC waves reveal that the energy of moderate and strong precipitation at ELFIN approximately agrees with theoretical expectations for cyclotron resonant interactions in a cold plasma. Using multiple years of ELFIN data uniformly distributed in local time, we assemble a statistical database of ∼50 events of strong EMIC wave-driven precipitation. Most reside at$L\sim 5-7$L57at dusk, while a smaller subset exists at$L\sim 8-12$L812at post-midnight. The energies of the peak-precipitation ratio and of the half-peak precipitation ratio (our proxy for the minimum resonance energy) exhibit an$L$L-shell dependence in good agreement with theoretical estimates based on prior statistical observations of EMIC wave power spectra. The precipitation ratio’s spectral shape for the most intense events has an exponential falloff away from the peak (i.e., on either side of$\sim 1.45$1.45MeV). It too agrees well with quasi-linear diffusion theory based on prior statistics of wave spectra. It should be noted though that this diffusive treatment likely includes effects from nonlinear resonant interactions (especially at high energies) and nonresonant effects from sharp wave packet edges (at low energies). Sub-MeV electron precipitation observed concurrently with strong EMIC wave-driven >1 MeV precipitation has a spectral shape that is consistent with efficient pitch-angle scattering down to ∼ 200-300 keV by much less intense higher frequency EMIC waves at dusk (where such waves are most frequent). At ∼100 keV, whistler-mode chorus may be implicated in concurrent precipitation. These results confirm the critical role of EMIC waves in driving relativistic electron losses. Nonlinear effects may abound and require further investigation.

     
    more » « less
  2. Abstract

    Electron resonant scattering by whistler‐mode waves is one of the most important mechanisms responsible for electron precipitation to the Earth's atmosphere. The temporal and spatial scales of such precipitation are dictated by properties of their wave source and background plasma characteristics, which control the efficiency of electron resonant scattering. We investigate these scales with measurements from the two low‐altitude Electron Losses and Fields Investigation (ELFIN) CubeSats that move practically along the same orbit, with along‐track separations ranging from seconds to tens of minutes. Conjunctions with the equatorial THEMIS mission are also used to aid our interpretation. We compare the variations in energetic electron precipitation at the sameL‐shells but on successive data collection orbit tracks by the two ELFIN satellites. Variations seen at the smallest inter‐satellite separations, those of less than a few seconds, are likely associated with whistler‐mode chorus elements or with the scale of chorus wave packets (0.1–1 s in time and ∼100 km in space at the equator). Variations between precipitationL‐shell profiles at intermediate inter‐satellite separations, a few seconds to about 1 min, are likely associated with whistler‐mode wave power modulations by ultra‐low frequency waves, that is, with the wave source region (from a few to tens of seconds to a few minutes in time and ∼1,000 km in space at the equator). During these two types of variations, consecutive crossings are associated with precipitationL‐shell profiles very similar to each other. Therefore the spatial and temporal variations at those scales do not change the net electron loss from the outer radiation belt. Variations at the largest range of inter‐satellite separations, several minutes to more than 10 min, are likely associated with mesoscale equatorial plasma structures that are affected by convection (at minutes to tens of minutes temporal variations and ≈[103, 104] km spatial scales). The latter type of variations results in appreciable changes in the precipitationL‐shell profiles and can significantly modify the net electron losses during successive tracks. Thus, such mesoscale variations should be included in simulations of the radiation belt dynamics.

     
    more » « less
  3. Abstract

    Most lower‐band chorus waves observed in the inner magnetosphere propagate under the form of moderately intense short wave packets with fast frequency and phase variations. Therefore, understanding the formation mechanism of such short wave packets is crucial for accurately modeling electron nonlinear acceleration or precipitation into the atmosphere by these waves. We compare chorus wave statistics from the Van Allen Probes with predictions from a simple model of short wave packet generation by wave superposition with resonance nonoverlap, as well as with results from Vlasov Hybrid Simulations of chorus wave generation in an inhomogeneous magnetic field in the presence of one or two simultaneous triggering waves. We show that the observed moderate amplitude short chorus wave packets can be formed by a superposition of two or more waves generated near the magnetic equator with a sufficiently large frequency difference.

     
    more » « less
  4. Abstract

    We evaluate energetic electron scattering in pitch angle and energy using realistic magnetic field and density models due to whistler mode chorus waves in Jupiter's magnetosphere and study their dependences on various wave and background parameters. We calculate the bounce‐averaged diffusion coefficients by considering the latitudinal variation of total electron density and ambient magnetic field intensity, using the VIP4 internal magnetic field and CAN current sheet model. The electron phase space density evolution due to chorus waves is simulated atMshell of 10, using the central wave frequency at0.1fceand wave amplitude of 30 pT. Under the typical values of the ratio between the plasma frequency and electron cyclotron frequency, chorus waves could cause fast pitch angle scattering loss of energetic electrons from tens to several hundred keV in several hours, and gradual acceleration of relativistic electrons at several MeV in several days. The electron pitch angle scattering at ~500 keV and the acceleration at several MeV are both enhanced using the latitudinally varying density and VIP4 + CAN magnetic field model compared to the electron evolution using the constant density and dipole magnetic field model. Our sensitivity study indicates that the electron scattering at higher energy is caused by waves at lower frequencies or in a lower‐density background plasma, and the scattering is faster for waves at smaller wave normal angles. The electron diffusion is mainly caused by waves at lower latitudes, but the waves at higher latitudes (>30°) contribute to the electron loss at higher energies (>2 MeV).

     
    more » « less
  5. Abstract

    Short and intense lower‐band chorus wave packets are ubiquitous in the Earth's outer radiation belt. In this article, we perform various Vlasov hybrid simulations, with one or two triggering waves, to study the generation of short chorus packets/subpackets inside long rising tone elements. We show that the length of the generated short wave packets is consistent with a criterion of resonance non‐overlap for two independent superposed waves, and that these chorus packets have similar characteristics as in Van Allen Probes observations. We find that short wave packets are mainly formed near the middle/end of long rising tones for moderate linear growth rates, and everywhere for stronger linear growth rates. Finally, we analyze an event characterized by Time History of Events and Macroscale Interactions during Substorms spacecraft measurements of chorus rising tones near the equator and simultaneous measurements by low altitude ELFIN CubeSats of precipitating and trapped electron fluxes in the same sector. The measured precipitating electron fluxes are well recovered by test particle simulations performed using measured plasma and wave properties. We show that short chorus wave packets of moderate amplitudes (160–250 pT) essentially lead to a more diffusive‐like transport of 50–200 keV electrons toward the loss cone than long packets. In contrast, long chorus packets are found to produce important nonlinear effects via anomalous trapping, which significantly reduces electron precipitation below 150 keV, especially for higher wave amplitudes.

     
    more » « less