skip to main content


Title: Translational biomaterials of four-dimensional bioprinting for tissue regeneration
Abstract

Bioprinting is an additive manufacturing technique that combines living cells, biomaterials, and biological molecules to develop biologically functional constructs. Three-dimensional (3D) bioprinting is commonly used as anin vitromodeling system and is a more accurate representation ofin vivoconditions in comparison to two-dimensional cell culture. Although 3D bioprinting has been utilized in various tissue engineering and clinical applications, it only takes into consideration the initial state of the printed scaffold or object. Four-dimensional (4D) bioprinting has emerged in recent years to incorporate the additional dimension of time within the printed 3D scaffolds. During the 4D bioprinting process, an external stimulus is exposed to the printed construct, which ultimately changes its shape or functionality. By studying how the structures and the embedded cells respond to various stimuli, researchers can gain a deeper understanding of the functionality of native tissues. This review paper will focus on the biomaterial breakthroughs in the newly advancing field of 4D bioprinting and their applications in tissue engineering and regeneration. In addition, the use of smart biomaterials and 4D printing mechanisms for tissue engineering applications is discussed to demonstrate potential insights for novel 4D bioprinting applications. To address the current challenges with this technology, we will conclude with future perspectives involving the incorporation of biological scaffolds and self-assembling nanomaterials in bioprinted tissue constructs.

 
more » « less
Award ID(s):
2234570 2025362 1905785
NSF-PAR ID:
10468272
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Biofabrication
Volume:
16
Issue:
1
ISSN:
1758-5082
Format(s):
Medium: X Size: Article No. 012001
Size(s):
["Article No. 012001"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Like the morphology of native tissue fiber arrangement (such as skeletal muscle), unidirectional anisotropic scaffolds are highly desired as a means to guide cell behavior in anisotropic tissue engineering. In contrast, contour-like staircases exhibit directional topographical cues and are judged as an inevitable defect of fused deposition modeling (FDM). In this study, we will translate this staircase defect into an effective bioengineering strategy by integrating FDM with surface coating technique (FCT) to investigate the effect of topographical cues on regulating behaviors of human mesenchymal stem cells (hMSCs) toward skeletal muscle tissues. This integrated approach serves to fabricate shape-specific, multiple dimensional, anisotropic scaffolds using different biomaterials. 2D anisotropic scaffolds, first demonstrated with different polycaprolactone concentrations herein, efficiently direct hMSC alignment, especially when the scaffold is immobilized on a support ring. By surface coating the polymer solution inside FDM-printed sacrificial structures, 3D anisotropic scaffolds with thin wall features are developed and used to regulate seeded hMSCs through a self-established rotating bioreactor. Using layer-by-layer coating, along with a shape memory polymer, smart constructs exhibiting shape fix and recovery processes are prepared, bringing this study into the realm of 4D printing. Immunofluorescence staining and real-time quantitative polymerase chain reaction analysis confirm that the topographical cues created via FCT significantly enhance the expression of myogenic genes, including myoblast differentiation protein-1, desmin, and myosin heavy chain-2. We conclude that there are broad application potentials for this FCT strategy in tissue engineering as many tissues and organs, including skeletal muscle, possess highly organized and anisotropic extracellular matrix components. 
    more » « less
  2. Abstract

    The encapsulation of cells within gel‐phase materials to form bioinks offers distinct advantages for next‐generation 3D bioprinting. 3D bioprinting has emerged as a promising tool for patterning cells, but the technology remains limited in its ability to produce biofunctional, tissue‐like constructs due to a dearth of materials suitable for bioinks. While early demonstrations commonly used viscous polymers optimized for printability, these materials often lacked cell compatibility and biological functionality. In response, advanced materials that exist in the gel phase during the entire printing process are being developed, since hydrogels are uniquely positioned to both protect cells during extrusion and provide biological signals to embedded cells as the construct matures during culture. Here, an overview of the design considerations for gel‐phase materials as bioinks is presented, with a focus on their mechanical, biochemical, and dynamic gel properties. Current challenges and opportunities that arise due to the fact that bioprinted constructs are active, living hydrogels composed of both acellular and cellular components are also evaluated. Engineering hydrogels with consideration of cells as an intrinsic component of the printed bioink will enable control over the evolution of the living construct after printing to achieve greater biofunctionality.

     
    more » « less
  3. Abstract

    Current therapies for nerve regeneration within injured tissues have had limited success due to complicated neural anatomy and inhibitory barriers in situ. Recent advancements in 3D bioprinting technologies have enabled researchers to develop novel 3D scaffolds with complex architectures in an effort to mitigate the challenges that beset reliable and defined neural tissue regeneration. Among several possible neuroregenerative treatment approaches that are being explored today, 3D bioprinted scaffolds have the unique advantage of being highly modifiable, which promotes greater resemblance to the native biological architecture of in vivo systems. This high architectural similarity between printed constructs and in vivo structures is thought to facilitate a greater capacity for repair of damaged nerve tissues. In this review, advances of several 3D bioprinting methods are introduced, including laser bioprinting, inkjet bioprinting, and extrusion‐based printing. In addition, the emergence of 4D printing is discussed, which adds a dimension of transformation over time to traditional 3D printing. Finally, an overview of emerging trends in advanced bioprinting materials is provided and their therapeutic potential for application in neural tissue regeneration is evaluated in both the central nervous system and the peripheral nervous system.

     
    more » « less
  4. Abstract

    3D bioprinting additively assembles bio‐inks to manufacture tissue‐mimicking biological constructs, but with the typical building blocks limited to 1D filaments. Here, it is developed a voxelated bioprinting technique for the digital assembly of spherical particles (DASP), which are effectively 0D voxels—the basic unit of 3D structures. It is shown that DASP enables on‐demand generation, deposition, and assembly of viscoelastic bio‐ink droplets. A two‐parameter diagram is developed to outline the viscoelasticity of bio‐inks required for printing spherical particles of good fidelity. Moreover, a strategy is developed for engineering bio‐inks with independently controllable viscoelasticity and mesh size, two of the most important yet intrinsically coupled physical properties of biomaterials. Using DASP, mechanically robust, multiscale porous scaffolds composed of interconnected yet distinguishable hydrogel particles are created. Finally, it is demonstrated the application of the scaffolds in encapsulating human pancreatic islets for sustained responsive insulin release. Together with the knowledge of bio‐ink design, DASP might be used to engineer highly heterogeneous, yet tightly organized tissue constructs for therapeutic applications.

     
    more » « less
  5. Abstract

    Extrusion‐based 3D printing of polymeric biomaterials has emerged as a promising approach for the fabrication of complex tissue engineering constructs. However, the large pore and feature size lead to low cell seeding efficiency and limited control of spatial distribution of cells within the scaffolds. We developed hybrid scaffolds that are composed of 3D‐printed layers and airbrushed fibrous membranes. Airbrushing time was adjusted to fabricate low (L), medium (M), and high (H) density membranes to effectively control stem cell infiltration. When two distinct populations of stem cells were seeded from top or bottom of the scaffolds, scaffolds composed ofLLLmembranes showed gradual mixing of the cells with depth, whereasLHLmembranes led to two distinct regions of cells separated by theHmembrane. Our results demonstrate that fibrous membranes incorporated within 3D‐printed layers enable user‐defined and spatially controlled cell compositions within hybrid scaffolds.

     
    more » « less