Abstract The cross-correlation between the 21 cm field and the galaxy distribution is a potential probe of the Epoch of Reionization (EoR). The 21 cm signal traces neutral gas in the intergalactic medium and, on large spatial scales, this should be anticorrelated with the high-redshift galaxy distribution, which partly sources and tracks the ionized gas. In the near future, interferometers such as the Hydrogen Epoch of Reionization Array (HERA) are projected to provide extremely sensitive measurements of the 21 cm power spectrum. At the same time, the Nancy Grace Roman Space Telescope (Roman) will produce the most extensive catalog to date of bright galaxies from the EoR. Using seminumeric simulations of reionization, we explore the prospects for measuring the cross-power spectrum between the 21 cm and galaxy fields during the EoR. We forecast a 12σdetection between HERA and Roman, assuming an overlapping survey area of 500 deg2, redshift uncertainties ofσz= 0.01 (as expected for the high-latitude spectroscopic survey of Lyα-emitting galaxies), and an effective Lyαemitter duty cycle offLAE= 0.1. Thus the HERA–Roman cross-power spectrum may be used to help verify 21 cm detections from HERA. We find that the shot-noise in the galaxy distribution is a limiting factor for detection, and so supplemental observations using Roman should prioritize deeper observations, rather than covering a wider field of view. We have made a public GitHub repository containing key parts of the calculation, which accompanies this paper:https://github.com/plaplant/21cm_gal_cross_correlation.
more »
« less
Cross Correlation of Pencil-beam Galaxy Surveys and Line-intensity Maps: An Application of the James Webb Space Telescope
Abstract Line-intensity mapping (IM) experiments seek to perform statistical measurements of large-scale structure with spectral lines such as 21 cm, CO, and Lyα. A challenge in these observations is to ensure that astrophysical foregrounds, such as galactic synchrotron emission in 21 cm measurements, are properly removed. One method that has the potential to reduce foreground contamination is to cross correlate with a galaxy survey that overlaps with the IM volume. However, telescopes sensitive to high-redshift galaxies typically have small field of views compared to IM surveys. Thus, a galaxy survey for cross correlation would necessarily consist of pencil beams that sparsely fill the IM volume. In this paper, we develop the formalism to forecast the sensitivity of cross correlations between IM experiments and pencil-beam galaxy surveys. We find that a random distribution of pencil beams leads to very similar overall sensitivity as a lattice spaced across the IM survey and derive a simple formula for random configurations that agrees with the Fisher matrix formalism. We explore examples of combining high-redshift James Webb Space Telescope (JWST) observations with both an SPHEREx-like LyαIM survey and a 21 cm experiment based on the Hydrogen Epoch of Reionization Array (HERA). We find that the JWST-SPHEREx case is promising, leading to a total signal-to-noise ratio of ∼5 after 100 total hours of JWST (atz= 7). We find that HERA is not well-suited for this approach owing to its drift-scan strategy, but that a similar experiment that can integrate down on one field could be.
more »
« less
- Award ID(s):
- 2009309
- PAR ID:
- 10468378
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 956
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 84
- Size(s):
- Article No. 84
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Based on Sloan Digital Sky Survey Data Release 16, we have detected the large-scale structure of Ly α emission in the universe at redshifts z = 2–3.5 by cross-correlating quasar positions and Ly α emission imprinted in the residual spectra of luminous red galaxies. We apply an analytical model to fit the corresponding Ly α surface brightness profile and multipoles of the redshift-space quasar–Ly α emission cross-correlation function. The model suggests an average cosmic Ly α luminosity density of 6.6 − 3.1 + 3.3 × 10 40 erg s − 1 cMpc − 3 , a ∼2 σ detection with a median value about 8–9 times those estimated from deep narrowband surveys of Ly α emitters at similar redshifts. Although the low signal-to-noise ratio prevents us from a significant detection of the Ly α forest–Ly α emission cross-correlation, the measurement is consistent with the prediction of our best-fit model from quasar–Ly α emission cross-correlation within current uncertainties. We rule out the scenario where the Ly α photons mainly originate from quasars. We find that Ly α emission from star-forming galaxies, including contributions from that concentrated around the galaxy centers and that in diffuse Ly α -emitting halos, is able to explain the bulk of the Ly α luminosity density inferred from our measurements. Ongoing and future surveys can further improve the measurements and advance our understanding of the cosmic Ly α emission field.more » « less
-
Abstract We present the first results from the Web Epoch of Reionization LyαSurvey (WERLS), a spectroscopic survey of Lyαemission using Keck I/MOSFIRE and LRIS. WERLS targets bright (J< 26) galaxy candidates with photometric redshifts of 5.5 ≲z≲ 8 selected from pre-JWST imaging embedded in the Epoch of Reionization (EoR) within three JWST deep fields: CEERS, PRIMER, and COSMOS-Web. Here, we report 11z∼ 7–8 Lyαemitters (LAEs; three secure and eight tentative candidates) detected in the first five nights of WERLS MOSFIRE data. We estimate our observed LAE yield is ∼13%, which is broadly consistent with expectations assuming some loss from redshift uncertainty, contamination from sky OH lines, and that the Universe is approximately half-ionized at this epoch, whereby observable Lyαemission is unlikely for galaxies embedded in a neutral intergalactic medium. Our targets are selected to be UV-bright, and span a range of absolute UV magnitudes with −23.1 <MUV< −19.8. With two LAEs detected atz= 7.68, we also consider the possibility of an ionized bubble at this redshift. Future synergistic Keck+JWST efforts will provide a powerful tool for pinpointing beacons of reionization and mapping the large-scale distribution of mass relative to the ionization state of the Universe.more » « less
-
Abstract The connection between galaxies and dark matter halos is often quantified using the stellar mass–halo mass (SMHM) relation. Optical and near-infrared imaging surveys have led to a broadly consistent picture of the evolving SMHM relation based on measurements of galaxy abundances and angular correlation functions. Spectroscopic surveys atz≳ 2 can also constrain the SMHM relation via the galaxy autocorrelation function and through the cross-correlation between galaxies and Lyαabsorption measured in transverse sight lines; however, such studies are very few and have produced some unexpected or inconclusive results. We use ∼3000 spectra ofz∼ 2.5 galaxies from the LyαTomography IMACS Survey (LATIS) to measure the galaxy–galaxy and galaxy–Lyαcorrelation functions in four bins of stellar mass spanning 109.2≲M*/M⊙≲ 1010.5. Parallel analyses of the MultiDarkN-body and ASTRID hydrodynamic cosmological simulations allow us to model the correlation functions, estimate covariance matrices, and infer halo masses. We find that results of the two methods are mutually consistent and broadly accord with standard SMHM relations. This consistency demonstrates that we are able to measure and model Lyαtransmission fluctuationsδFin LATIS accurately. We also show that the galaxy–Lyαcross-correlation, a free by-product of optical spectroscopic galaxy surveys at these redshifts, can constrain halo masses with similar precision to galaxy–galaxy clustering.more » « less
-
Abstract We report the detection of 21 cm emission at an average redshift in the cross-correlation of data from the Canadian Hydrogen Intensity Mapping Experiment (CHIME) with measurements of the Lyαforest from eBOSS. Data collected by CHIME over 88 days in the 400–500 MHz frequency band (1.8 <z< 2.5) are formed into maps of the sky and high-pass delay filtered to suppress the foreground power, corresponding to removing cosmological scales withk∥≲ 0.13 Mpc−1at the average redshift. Line-of-sight spectra to the eBOSS background quasar locations are extracted from the CHIME maps and combined with the Lyαforest flux transmission spectra to estimate the 21 cm–Lyαcross-correlation function. Fitting a simulation-derived template function to this measurement results in a 9σdetection significance. The coherent accumulation of the signal through cross-correlation is sufficient to enable a detection despite excess variance from foreground residuals ∼6–10 times brighter than the expected thermal noise level in the correlation function. These results are the highest-redshift measurement of 21 cm emission to date, and they set the stage for future 21 cm intensity mapping analyses atz> 1.8.more » « less
An official website of the United States government
