skip to main content


Title: CLASS Data Pipeline and Maps for 40 GHz Observations through 2022
Abstract

The Cosmology Large Angular Scale Surveyor (CLASS) is a telescope array that observes the cosmic microwave background over 75% of the sky from the Atacama Desert, Chile, at frequency bands centered near 40, 90, 150, and 220 GHz. This paper describes the CLASS data pipeline and maps for 40 GHz observations conducted from 2016 August to 2022 May. We demonstrate how well the CLASS survey strategy, with rapid (∼10 Hz) front-end modulation, recovers the large-scale Galactic polarization signal from the ground: the mapping transfer function recovers ∼67% (85%) ofEEandBB(VV) power at= 20 and ∼35% (47%) at= 10. We present linear and circular polarization maps over 75% of the sky. Simulations based on the data imply the maps have a white noise level of110μKarcminand correlated noise component rising at low-as−2.4. The transfer-function-corrected low-component is comparable to the white noise at the angular knee frequencies of≈ 18 (linear polarization) and≈ 12 (circular polarization). Finally, we present simulations of the level at which expected sources of systematic error bias the measurements, finding subpercent bias for the Λ cold dark matterEEpower spectra. Bias fromE-to-Bleakage due to the data reduction pipeline and polarization angle uncertainty approaches the expected level for anr= 0.01BBpower spectrum. Improvements to the instrument calibration and the data pipeline will decrease this bias.

 
more » « less
NSF-PAR ID:
10468413
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
956
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 77
Size(s):
["Article No. 77"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Measurement of the largest angular scale (< 30) features of the cosmic microwave background (CMB) polarization is a powerful way to constrain the optical depth to reionization and search for the signature of inflation through the detection of primordialB-modes. We present an analysis of maps covering 73.6% of the sky made from the 40 GHz channel of the Cosmology Large Angular Scale Surveyor (CLASS) from 2016 August to 2022 May. Taking advantage of the measurement stability enabled by front-end polarization modulation and excellent conditions from the Atacama Desert, we show this channel achieves higher sensitivity than the analogous frequencies from satellite measurements in the range 10 << 100. Simulations show the CLASS linear (circular) polarization maps have a white noise level of125(130)μKarcmin. We measure the Galaxy-maskedEEandBBspectra of diffuse synchrotron radiation and compare to space-based measurements at similar frequencies. In combination with external data, we expand measurements of the spatial variations of the synchrotron spectral energy density (SED) to include new sky regions and measure the diffuse SED in the harmonic domain. We place a new upper limit on a background of circular polarization in the range 5 << 125 with the first bin showingD< 0.023μKCMB2at 95% confidence. These results establish a new standard for recovery of the largest-scale CMB polarization from the ground and signal exciting possibilities when the higher sensitivity and higher-frequency CLASS channels are included in the analysis.

     
    more » « less
  2. Abstract

    We present a detection of 21 cm emission from large-scale structure (LSS) between redshift 0.78 and 1.43 made with the Canadian Hydrogen Intensity Mapping Experiment. Radio observations acquired over 102 nights are used to construct maps that are foreground filtered and stacked on the angular and spectral locations of luminous red galaxies (LRGs), emission-line galaxies (ELGs), and quasars (QSOs) from the eBOSS clustering catalogs. We find decisive evidence for a detection when stacking on all three tracers of LSS, with the logarithm of the Bayes factor equal to 18.9 (LRG), 10.8 (ELG), and 56.3 (QSO). An alternative frequentist interpretation, based on the likelihood ratio test, yields a detection significance of 7.1σ(LRG), 5.7σ(ELG), and 11.1σ(QSO). These are the first 21 cm intensity mapping measurements made with an interferometer. We constrain the effective clustering amplitude of neutral hydrogen (Hi), defined asHI103ΩHIbHI+fμ2, where ΩHiis the cosmic abundance of Hi,bHiis the linear bias of Hi, and 〈fμ2〉 = 0.552 encodes the effect of redshift-space distortions at linear order. We findHI=1.510.97+3.60for LRGs (z= 0.84),HI=6.763.79+9.04for ELGs (z= 0.96), andHI=1.680.67+1.10for QSOs (z= 1.20), with constraints limited by modeling uncertainties at nonlinear scales. We are also sensitive to bias in the spectroscopic redshifts of each tracer, and we find a nonzero bias Δv= − 66 ± 20 km s−1for the QSOs. We split the QSO catalog into three redshift bins and have a decisive detection in each, with the upper bin atz= 1.30 producing the highest-redshift 21 cm intensity mapping measurement thus far.

     
    more » « less
  3. Abstract

    In this follow-up analysis, we update previous constraints on the transitional Planck mass (TPM) modified gravity model using the latest version of EFTCAMB and provide new constraints using South Pole Telescope (SPT) and Planck anisotropy data along with Planck cosmic microwave background lensing, baryon acoustic oscillations, and Type Ia supernovae data and a Hubble constant,H0, prior from local measurements. We find that large shifts in the Planck mass lead to large suppression of power on small scales that is disfavored by both the SPT and Planck data. Using only the SPT temperature-polarization–polarization-polarization (TE-EE) data, this suppression of power can be compensated for by an upward shift of the scalar index tons= 1.003 ± 0.016, resulting inH0=71.940.85+0.86km m−1Mpc−1and a ∼7% shift in the Planck mass. Including the Planck temperature-temperature (TT) ≤ 650 and Planck TE-EE data restricts the shift to be <5% at 2σwithH0= 70.65 ± 0.66 km m−1Mpc−1. Excluding theH0prior, the SPT and Planck data constrain the shift in the Planck mass to be <3% at 2σwith a best-fit value of 0.04%, consistent with the Λ cold dark matter limit. In this caseH0=69.090.68+0.69km s−1Mpc−1, which is partially elevated by the dynamics of the scalar field in the late Universe. This differs from early dark energy models that prefer higher values ofH0when the high-Planck TT data are excluded. We additionally constrain TPM using redshift space distortion data from BOSS DR12 and cosmic shear, galaxy–galaxy lensing, and galaxy clustering data from DES Y1, finding both disfavor transitions close to recombination, but earlier Planck mass transitions are allowed.

     
    more » « less
  4. Abstract

    The DECam Ecliptic Exploration Project (DEEP) is a deep survey of the trans-Neptunian solar system being carried out on the 4 m Blanco telescope at the Cerro Tololo Inter-American Observatory in Chile using the Dark Energy Camera (DECam). By using a shift-and-stack technique to achieve a mean limiting magnitude ofr∼ 26.2, DEEP achieves an unprecedented combination of survey area and depth, enabling quantitative leaps forward in our understanding of the Kuiper Belt populations. This work reports results from an analysis of 20, 3 deg2DECam fields along the invariable plane. We characterize the efficiency and false-positive rates for our moving-object detection pipeline, and use this information to construct a Bayesian signal probability for each detected source. This procedure allows us to treat all of our Kuiper Belt object (KBO) detections statistically, simultaneously accounting for efficiency and false positives. We detect approximately 2300 candidate sources with KBO-like motion with signal-to-noise ratios > 6.5. We use a subset of these objects to compute the luminosity function of the Kuiper Belt as a whole, as well as the cold classical (CC) population. We also investigate the absolute magnitude (H) distribution of the CCs, and find consistency with both an exponentially tapered power law, which is predicted by streaming instability models of planetesimal formation, and a rolling power law. Finally, we provide an updated mass estimate for the CC Kuiper Belt ofMCC(Hr<12)=0.00170.0004+0.0010M, assuming albedop= 0.15 and densityρ= 1 g cm−3.

     
    more » « less
  5. Abstract

    Pulsar timing array collaborations, such as the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), are seeking to detect nanohertz gravitational waves emitted by supermassive black hole binaries formed in the aftermath of galaxy mergers. We have searched for continuous waves from individual circular supermassive black hole binaries using NANOGrav’s recent 12.5 yr data set. We created new methods to accurately model the uncertainties on pulsar distances in our analysis, and we implemented new techniques to account for a common red-noise process in pulsar timing array data sets while searching for deterministic gravitational wave signals, including continuous waves. As we found no evidence for continuous waves in our data, we placed 95% upper limits on the strain amplitude of continuous waves emitted by these sources. At our most sensitive frequency of 7.65 nHz, we placed a sky-averaged limit ofh0< (6.82 ± 0.35) × 10−15, andh0< (2.66 ± 0.15) × 10−15in our most sensitive sky location. Finally, we placed a multimessenger limit of<(1.41±0.02)×109Mon the chirp mass of the supermassive black hole binary candidate 3C 66B.

     
    more » « less