Abstract Sea ice can profoundly influence photosynthetic organisms by altering subsurface irradiance, but it is susceptible to changes in the climate. The patterns and timing of sea ice cover can vary on a monthly to annual timescale in small sub‐regions of the Western Antarctic Peninsula (WAP). During the latter part of the 20th century, sea ice coverage significantly decreased in the WAP, a trend that aligns with warming in this area. Macroalgal biochemical components are impacted by light availability, often showing a close relationship between photosynthesis and biochemical compositions. We used satellite imagery of annual sea ice duration and extent as well as water turbidity during ice‐free periods to identify 14 study sites that differed dramatically in sea ice coverage but were similar in terms of turbidity along the central WAP between 68° S and 64° S. The common macroalgal speciesDesmarestia menziesii,Himantothallus grandifolius,Sarcopeltis antarctica, andIridaeasp. were collected by scuba divers between 5 m and 35 m depth at each site where they occurred, for later biochemical analyses. Overall percentages of major biochemical components as well as carbon and nitrogen percentages and C:N were determined and correlated with four different sea ice indices. Surprisingly, most of the chemical components were not significantly correlated with sea ice cover. The few significant correlations varied between species and chemical components. This indicates that although patterns of sea ice coverage have major implications for macroalgal abundance, on a per‐biomass basis, sea ice coverage does not impact the nutritional contributions of macroalgae to food webs.
more »
« less
Macroalgal input into the coastal food web along a gradient of seasonal sea ice cover along the Western Antarctic Peninsula
Coastal food webs that are supported by multiple primary producer sources are considered to be more stable against perturbations. Here, we investigated how declining macroalgal abundance and diversity might influence coastal food web structure along an annual sea ice cover gradient along the Western Antarctic Peninsula (WAP). The most common benthic invertebrate consumers, macroalgae, and surface particulate organic matter were collected at 15 stations along the WAP. Stable carbon and nitrogen isotope values of primary producers changed negligibly in relation to the sea ice cover gradient, while isotope values of most invertebrate feeding groups increased with higher sea ice cover, although at low explanatory power. Food web length became shorter and consumer trophic niche width smaller in regions with higher sea ice cover. Changes in food web structure were mostly associated with shifts in trophic position of lower trophic levels. Food web structure in higher ice-covered regions resembled that of more generalist feeders with a loss of specialist species, concurrent with an increased reliance on a more reworked detrital food source. These results suggest that a number of benthic invertebrates are able to adjust to differences in basal energy sources. Conversely, these food webs dominated by generalist feeders are likely less efficient in energy transfer, which can create less-stable systems with lower adaptive capacity to disturbance. The predicted sea ice loss along the WAP may ultimately lead to a longer food web with higher macroalgal abundance, more specialist species, and wider consumer trophic niches in the currently more ice-covered regions.
more »
« less
- PAR ID:
- 10468696
- Publisher / Repository:
- Inter-Research Science
- Date Published:
- Journal Name:
- Marine Ecology Progress Series
- Volume:
- 718
- ISSN:
- 0171-8630
- Page Range / eLocation ID:
- 1 to 22
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Characterizing energy flow and trophic linkages is fundamental to understanding the functioning and resilience of Arctic ecosystems under increasing pressure from climate change and anthropogenic exploitation. We used carbon and nitrogen stable isotopes to examine trophic dynamics and the relative contribution of terrestrial organic matter, water column phytoplankton, and phytobenthos (benthic micro- and macro-autotrophs as well as sea ice algae) to the food webs supporting 45 macroconsumers in three Arctic coastal lagoon ecosystems (Krusenstern, Sisualik, Akulaaq) and the adjacent Kotzebue Sound with varying degrees of connectivity in Cape Krusenstern National Monument, Alaska. A two-source (water column particulate organic matter and benthic sediment organic matter), two-isotope trophic dynamics model informed by a Bayesian isotope mixing model revealed that the Lagoon-Kotzebue Sound coastal ecosystem supported consumers along a trophic position continuum from primary consumers, including amphipods, copepods, and clams to trophic level five predators, such as seastars, piscivorous fishes, seals, and seabirds. The relative contribution of the three primary producer end members, terrestrial organic matter (41 ± 21%), phytoplankton (25 ± 21%), and phytobenthos (34 ± 23%) varied as a function of: 1) consumer foraging ecology and 2) consumer location. Suspension feeders received most of their carbon from food webs based on phytoplankton (49 ± 11%) and terrestrial organic matter (23 ± 5%), whereas herbivores and detritivores received the majority of their carbon from phytobenthos-based food webs, 58 ± 10% and 60 ± 8%, respectively. Omnivores and predators showed more even distributions of resource reliance and greater overall variance among species. Within the invertebrates, the importance of terrestrial organic matter decreased and phytobenthos increased with increasing trophic position. The importance of terrestrial organic matter contribution increased with lagoon proximity to major rivers inputs and isolation from Kotzebue Sound. Several taxa with cultural and subsistence food importance to local communities showed significant reliance (30–90% of baseline carbon) on food chains linked to fresh terrestrial organic matter. Our study indicates that terrestrial-marine linkages are important to the function of Arctic coastal lagoon ecosystems and artisanal fisheries. These linkages are likely to strengthen in the future with regional changes in erosion and runoff associated with climate change and anthropogenic disturbance.more » « less
-
Macroalgal forests dominate shallow hard bottom areas along the northern portion of the Western Antarctic Peninsula (WAP). Macroalgal biomass and diversity are known to be dramatically lower in the southern WAP and at similar latitudes around Antarctica, but few reports detail the distributions of macroalgae or associated macroinvertebrates in the central WAP. We used satellite imagery to identify 14 sites differing in sea ice coverage but similar in terms of turbidity along the central WAP. Fleshy macroalgal cover was strongly, negatively correlated with ice concentration, but there was no significant correlation between macroinvertebrate cover and sea ice. Overall community (all organisms) diversity correlated negatively with sea ice concentration and positively with fleshy macroalgal cover, which ranged from around zero at high ice sites to 80% at the lowest ice sites. Nonparametric, multivariate analyses resulted in clustering of macroalgal assemblages across most of the northern sites of the study area, although they differed greatly with respect to macroalgal percent cover and diversity. Analyses of the overall communities resulted in three site clusters corresponding to high, medium, and low fleshy macroalgal cover. At most northern sites, macroalgal cover was similar across depths, but macroalgal and macroinvertebrate distributions suggested increasing effects of ice scour in shallower depths towards the south. Hindcast projections based on correlations of ice and macroalgal cover data suggest that macroalgal cover at many sites could have been varying substantially over the past 40 years. Similarly, based on predicted likely sea ice decreases by 2100, projected increases in macroalgal cover at sites that currently have high ice cover and low macroalgal cover are substantial, often with only a future 15% decrease in sea ice. Such changes would have important ramifications to future benthic communities and to understanding how Antarctic macroalgae may contribute to future blue carbon sequestration.more » « less
-
Ciguatera poisoning (CP) poses a significant threat to ecosystem services and fishery resources in coastal communities. The CP-causative ciguatoxins (CTXs) are produced by benthic dinoflagellates including Gambierdiscus and Fukuyoa spp., and enter reef food webs via grazing on macroalgal substrates. In this study, we report on a 3-year monthly time series in St. Thomas, US Virgin Islands where Gambierdiscus spp. abundance and Caribbean-CTX toxicity in benthic samples were compared to key environmental factors, including temperature, salinity, nutrients, benthic cover, and physical data. We found that peak Gambierdiscus abundance occurred in summer while CTX-specific toxicity peaked in cooler months (February–May) when the mean water temperatures were approximately 26–28 °C. These trends were most evident at deeper offshore sites where macroalgal cover was highest year-round. Other environmental parameters were not correlated with the CTX variability observed over time. The asynchrony between Gambierdiscus spp. abundance and toxicity reflects potential differences in toxin cell quotas among Gambierdiscus species with concomitant variability in their abundances throughout the year. These results have significant implications for monitoring and management of benthic harmful algal blooms and highlights potential seasonal and highly-localized pulses in reef toxin loads that may be transferred to higher trophic levels.more » « less
-
Consumer-mediated movement can couple food webs in distinct habitats and facilitate energy flow between them. In New England saltmarshes, mummichogs (Fundulus heteroclitus) connect the vegetated marsh and creek food webs by opportunistically foraging on the invertebrate communities of the marsh surface when access is permitted by tidal flooding and marsh-edge geomorphology. Via their movements, mummichog represent a critical food web node, as they can potentially transport energy from the marsh surface food web to creek food web and exert top-down control on the communities of the vegetated marsh surface. Here, I use gut content analysis, calorimetric analysis, and field surveys to demonstrate that access to the marsh surface (afforded by marsh-edge geomorphology) impacts the trophic relay of marsh production to creek food webs. Fish populations in creeks with greater connectivity had a higher total biomass of terrestrial invertebrates in their guts. However, bomb calorimetry showed no difference in the average caloric content of mummichog individuals from creeks with different creek edge geomorphology. Access also did not impact mummichog distribution across the marsh platform and exhibited no evidence of top-down control on their invertebrate prey. Thus, mummichogs function as initial nodes in the trophic relay, unidirectionally moving energy from the vegetated marsh to the creek food web. Reduced marsh surface access via altered marsh-edge geomorphology results in a 50 % to 66 % reduction in total energy available to aquatic predators via this route. Estuarine systems are intimately connected to coastal and offshore systems via consumer mediated flows of energy; thus, disruptions to the trophic relay from the marsh surface at the tidal creek scale can have far reaching impacts on secondary productivity in multiple disparate systems and must be accounted for in considerations of impacts to future food-web function.more » « less
An official website of the United States government

