- Award ID(s):
- 1757371
- PAR ID:
- 10468727
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Chem
- ISSN:
- 2451-9294
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Despite hundreds of studies involving slide-ring gels derived from cyclodextrin (CD)-based polyrotaxanes (PRs), their covalent cross-linking kinetics are not well characterized. We employ chemorheology as a tool to measure the gelation kinetics of a model slide-ring organogel derived from α -cyclodextrin/poly (ethylene glycol) PRs cross-linked with hexamethylenediisocyanate (HMDI) in DMSO. The viscoelastic properties of the gels were monitored in situ by small-amplitude oscillatory shear (SAOS) rheology, enabling us to estimate the activation barrier and rate law for cross-linking while mapping experimental parameters to kinetics and mechanical properties. Gelation time, gel point, and final gel elasticity depend on cross-linker concentration, but polyrotaxane concentration only affects gelation time and elasticity (not gel point), while temperature only affects gelation time and gel point (not final elasticity). These measurements facilitate the rational design of slide-ring networks by simple parameter selection (temperature, cross-linker concentration, PR concentration, reaction time).more » « less
-
Ring-sliding behavior in polyrotaxanes imbues gels, elastomers, and glasses with remarkable stress-dissipation and actuation properties. Since these properties can be modulated and tuned by structural parameters, many efforts have been devoted to developing synthetic protocols that define the structures and properties of slide-ring materials. We introduce post-synthetic modifications of slide-ring gels derived from unmodified α-cyclodextrin and poly(ethylene glycol) polyrotaxanes that enable (i) actuation and control of the thermo-responsive lower critical solution temperature (LCST) behavior of ring-modified slide-ring hydrogels, and (ii) chemically bonding separate gels into hybrid or shape-reconfigured macro-structures with a slide-ring adhesive solution. The mechanical properties of the post-modified gels have been characterized by shear rheology and uniaxial tensile tests, while the corresponding xerogels were characterized by wide-angle X-ray scattering. These demonstrations show that post-synthetic modification offers a practical solution for re-configuring the properties and shapes of slide-ring gels.more » « less
-
Abstract Highly elastic silicone foams, especially those with tunable properties and multifunctionality, are of great interest in numerous fields. However, the liquid nature of silicone precursors and the complicated foaming process hinder the realization of its three‐dimensional (3D) printability. Herein, a series of silicone foams with outstanding performance with regards to elasticity, wetting and sensing properties, multifunctionality, and tunability is generated by direct ink writing. Viscoelastic inks are achieved from direct dispersion of sodium chloride in a unique silicone precursor solution. The 3D‐architectured silicone rubber exhibits open‐celled trimodal porosity, which offers ultraelasticity with hyper compressibility/cycling endurance (near‐zero stress/strain loss under 90% compression or 1000 compression cycles), excellent stretchability (210% strain), and superhydrophobicity. The resulting foam is demonstrated to be multifunctional, such that it can work as an oil sorbent with super capacity (1320%) and customizable soft sensor after absorption of carbon nanotubes on the foam surface. The strategy enables tunability of mechanical strength, elasticity, stretchability, and absorbing capacity, while printing different materials together offers property gradients as an extra dimension of tunability. The first 3D printed silicone foam, which serves an important step toward its application expansion, is achieved.
-
Abstract The design of hydrogels where multiple interpenetrating networks enable enhanced mechanical properties can broaden their field of application in biomedical materials, 3D printing, and soft robotics. We report a class of self-reinforced homocomposite hydrogels (HHGs) comprised of interpenetrating networks of multiscale hierarchy. A molecular alginate gel is reinforced by a colloidal network of hierarchically branched alginate soft dendritic colloids (SDCs). The reinforcement of the molecular gel with the nanofibrillar SDC network of the same biopolymer results in a remarkable increase of the HHG’s mechanical properties. The viscoelastic HHGs show >3× larger storage modulus and >4× larger Young’s modulus than either constitutive network at the same concentration. Such synergistically enforced colloidal-molecular HHGs open up numerous opportunities for formulation of biocompatible gels with robust structure-property relationships. Balance of the ratio of their precursors facilitates precise control of the yield stress and rate of self-reinforcement, enabling efficient extrusion 3D printing of HHGs.
-
Open-top light-sheet (OTLS) microscopy offers rapid 3D imaging of large optically cleared specimens. This enables nondestructive 3D pathology, which provides key advantages over conventional slide-based histology including comprehensive sampling without tissue sectioning/destruction and visualization of diagnostically important 3D structures. With 3D pathology, clinical specimens are often labeled with small-molecule stains that broadly target nucleic acids and proteins, mimicking conventional hematoxylin and eosin (H&E) dyes. Tight optical sectioning helps to minimize out-of-focus fluorescence for high-contrast imaging in these densely labeled tissues but has been challenging to achieve in OTLS systems due to trade-offs between optical sectioning and field of view. Here we present an OTLS microscope with voice-coil-based axial sweeping to circumvent this trade-off, achieving 2 µm axial resolution over a 750 × 375 µm field of view. We implement our design in a non-orthogonal dual-objective (NODO) architecture, which enables a 10-mm working distance with minimal sensitivity to refractive index mismatches, for high-contrast 3D imaging of clinical specimens.