skip to main content


Title: Diverse functional interaction driven by control-default network hubs supports creative thinking
Abstract

Complex cognitive processes, like creative thinking, rely on interactions among multiple neurocognitive processes to generate effective and innovative behaviors on demand, for which the brain’s connector hubs play a crucial role. However, the unique contribution of specific hub sets to creative thinking is unknown. Employing three functional magnetic resonance imaging datasets (total N = 1,911), we demonstrate that connector hub sets are organized in a hierarchical manner based on diversity, with “control-default hubs”—which combine regions from the frontoparietal control and default mode networks—positioned at the apex. Specifically, control-default hubs exhibit the most diverse resting-state connectivity profiles and play the most substantial role in facilitating interactions between regions with dissimilar neurocognitive functions, a phenomenon we refer to as “diverse functional interaction”. Critically, we found that the involvement of control-default hubs in facilitating diverse functional interaction robustly relates to creativity, explaining both task-induced functional connectivity changes and individual creative performance. Our findings suggest that control-default hubs drive diverse functional interaction in the brain, enabling complex cognition, including creative thinking. We thus uncover a biologically plausible explanation that further elucidates the widely reported contributions of certain frontoparietal control and default mode network regions in creativity studies.

 
more » « less
NSF-PAR ID:
10468789
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Cerebral Cortex
Volume:
33
Issue:
23
ISSN:
1047-3211
Format(s):
Medium: X Size: p. 11206-11224
Size(s):
["p. 11206-11224"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Research Highlights

    Most executive jobs are prospected to be obsolete within several decades, so creative skills are seen as essential for the near future.

    School experience has been shown to play a role in creativity development, however, the underlying brain mechanisms remained under‐investigated yet.

    Seventy‐five 4–18 years‐old children, from Montessori or traditional schools, performed a creativity task at the behavioral level, and a 6‐min resting‐state MR scan.

    We uniquely report preliminary evidence for the impact of pedagogy on functional brain networks.

     
    more » « less
  2. null (Ed.)
    Abstract Creative cognition has been consistently associated with functional connectivity between frontoparietal control and default networks. However, recent research identified distinct connectivity dynamics for subnetworks within the larger frontoparietal system—one subnetwork (FPCNa) shows positive coupling with the default network and another subnetwork (FPCNb) shows negative default coupling—raising questions about how these networks interact during creative cognition. Here we examine frontoparietal subnetwork functional connectivity in a large sample of participants (n = 171) who completed a divergent creative thinking task and a resting-state scan during fMRI. We replicated recent findings on functional connectivity of frontoparietal subnetworks at rest: FPCNa positively correlated with the default network and FPCNb negatively correlated with the default network. Critically, we found that divergent thinking evoked functional connectivity between both frontoparietal subnetworks and the default network, but in different ways. Using community detection, we found that FPCNa regions showed greater coassignment to a default network community. However, FPCNb showed overall stronger functional connectivity with the default network—reflecting a reversal of negative connectivity at rest—and the strength of FPCNb-default network connectivity correlated with individual creative ability. These findings provide novel evidence of a behavioral benefit to the cooperation of typically anticorrelated brain networks. 
    more » « less
  3. null (Ed.)
    Recent studies of creative cognition have revealed interactions between functional brain networks involved in the generation of novel ideas; however, the neural basis of creativity is highly complex and presents a great challenge in the field of cognitive neuroscience, partly because of ambiguity around how to assess creativity. We applied a novel computational method of verbal creativity assessment—semantic distance—and performed weighted degree functional connectivity analyses to explore how individual differences in assembly of resting-state networks are associated with this objective creativity assessment. To measure creative performance, a sample of healthy adults ( n = 175) completed a battery of divergent thinking (DT) tasks, in which they were asked to think of unusual uses for everyday objects. Computational semantic models were applied to calculate the semantic distance between objects and responses to obtain an objective measure of DT performance. All participants underwent resting-state imaging, from which we computed voxel-wise connectivity matrices between all gray matter voxels. A linear regression analysis was applied between DT and weighted degree of the connectivity matrices. Our analysis revealed a significant connectivity decrease in the visual-temporal and parietal regions, in relation to increased levels of DT. Link-level analyses showed higher local connectivity within visual regions was associated with lower DT, whereas projections from the precuneus to the right inferior occipital and temporal cortex were positively associated with DT. Our results demonstrate differential patterns of resting-state connectivity associated with individual creative thinking ability, extending past work using a new application to automatically assess creativity via semantic distance. 
    more » « less
  4. Abstract

    While the brain’s functional network architecture is largely conserved between resting and task states, small but significant changes in functional connectivity support complex cognition. In this study, we used a modified Raven’s Progressive Matrices Task to examine symbolic and perceptual reasoning in human participants undergoing fMRI scanning. Previously, studies have focused predominantly on discrete symbolic versions of matrix reasoning, even though the first few trials of the Raven’s Advanced Progressive Matrices task consist of continuous perceptual stimuli. Our analysis examined the activation patterns and functional reconfiguration of brain networks associated with resting state and both symbolic and perceptual reasoning. We found that frontoparietal networks, including the cognitive control and dorsal attention networks, were significantly activated during abstract reasoning. We determined that these same task-active regions exhibited flexibly-reconfigured functional connectivity when transitioning from resting state to the abstract reasoning task. Conversely, we showed that a stable network core of regions in default and somatomotor networks was maintained across both resting and task states. We propose that these regionally-specific changes in the functional connectivity of frontoparietal networks puts the brain in a “task-ready” state, facilitating efficient task-based activation.

     
    more » « less
  5. Abstract

    Complex human cognition arises from the integrated processing of multiple brain systems. However, little is known about how brain systems and their interactions might relate to, or perhaps even explain, human cognitive capacities. Here, we address this gap in knowledge by proposing a mechanistic framework linking frontoparietal system activity, default mode system activity, and the interactions between them, with individual differences in working memory capacity. We show that working memory performance depends on the strength of functional interactions between the frontoparietal and default mode systems. We find that this strength is modulated by the activation of two newly described brain regions, and demonstrate that the functional role of these systems is underpinned by structural white matter. Broadly, our study presents a holistic account of how regional activity, functional connections, and structural linkages together support integrative processing across brain systems in order for the brain to execute a complex cognitive process.

     
    more » « less