This dataset includes depth profiles in the euphotic zone of nutrient (nitrate, silicate, phosphate) concentrations and profiles of silicic acid uptake rates from EXPORTS cruise RR1813. The EXPORTS field campaign in the subarctic North Pacific sampled an ecosystem characterized as high nutrient low chlorophyll (HNLC) due to low iron (Fe) levels that are primary controllers constraining phytoplankton utilization of other nutrients. It has been a paradigm in low Fe, HNLC systems that diatoms grow at elevated Si:C and Si:N ratios and should be efficiently exported as particles significantly enriched in Si relative to C. However, Fe limitation also alters diatoms species composition and the high Si demand imposed by low Fe can drive HNLC regions to Si limitation or Si/Fe co-limitation. Thus, the degree of Si and/or Fe stress in HNLC waters can all alter diatom taxonomic composition, the elemental composition of diatom cells, and the path cells follow through the food web ultimately altering diatom carbon export. Within each ecosystem state examined in the EXPORTS program, nutrient biogeochemistry, diatom and phytoplankton community structure, and global diatom gene expression patterns (metatranscriptomics) are characterized in the lit ocean. Nutrient amendment experiments with tracer addition (14C, 32Si) are used to quantify the level of Si and Fe stress being experienced by the phytoplankton and to contextualize taxa-specific metatranscriptome responses for resolving gene expression profiles in the in situ communities.
more »
« less
Subcellular proteomics for determining iron‐limited remodeling of plastids in the model diatom Thalassiosira pseudonana (Bacillariophyta)
Abstract Diatoms are important primary producers in the world's oceans, yet their growth is constrained in large regions by low bioavailable iron (Fe). Low‐Fe stress‐induced limitation of primary production is due to requirements for Fe in components of essential metabolic pathways including photosynthesis and other chloroplast plastid functions. Studies have shown that under low‐Fe stress, diatoms alter plastid‐specific processes, including components of electron transport. These physiological changes suggest changes of protein content and in protein abundances within the diatom plastid. While in silico predictions provide putative information on plastid‐localized proteins, knowledge of diatom plastid proteins remains limited in comparison to well‐studied model photosynthetic organisms. To address this, we employed shotgun proteomics to investigate the proteome of subcellular plastid‐enriched fractions fromThalassiosira pseudonanato gain a better understanding of how the plastid proteome is remodeled in response to Fe limitation. Using mass spectrometry‐based peptide identification and quantification, we analyzedT. pseudonanagrown under Fe‐replete and ‐limiting conditions. Through these analyses, we inferred the relative quantities of each protein, revealing that Fe limitation regulates major metabolic pathways in the plastid, including the Calvin cycle. Additionally, we observed changes in the expression of light‐harvesting proteins. In silico localization predictions of proteins identified in this plastid‐enriched proteome allowed for an in‐depth comparison of theoretical versus observed plastid‐localization, providing evidence for the potential of additional protein import pathways into the diatom plastid.
more »
« less
- Award ID(s):
- 1756816
- PAR ID:
- 10468861
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Phycology
- Volume:
- 59
- Issue:
- 5
- ISSN:
- 0022-3646
- Format(s):
- Medium: X Size: p. 1085-1099
- Size(s):
- p. 1085-1099
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This dataset includes 32Si and 14C production data (experimental) from EXPORTS cruise RR1813. The EXPORTS field campaign in the subarctic North Pacific sampled an ecosystem characterized as high nutrient low chlorophyll (HNLC) due to low iron (Fe) levels that are primary controllers constraining phytoplankton utilization of other nutrients. It has been a paradigm in low Fe, HNLC systems that diatoms grow at elevated Si:C and Si:N ratios and should be efficiently exported as particles significantly enriched in Si relative to C. However, Fe limitation also alters diatoms species composition and the high Si demand imposed by low Fe can drive HNLC regions to Si limitation or Si/Fe co-limitation. Thus, the degree of Si and/or Fe stress in HNLC waters can all alter diatom taxonomic composition, the elemental composition of diatom cells, and the path cells follow through the food web ultimately altering diatom carbon export. Within each ecosystem state examined in the EXPORTS program, nutrient biogeochemistry, diatom and phytoplankton community structure, and global diatom gene expression patterns (metatranscriptomics) are characterized in the lit ocean. Nutrient amendment experiments with tracer addition (14C, 32Si) are used to quantify the level of Si and Fe stress being experienced by the phytoplankton and to contextualize taxa-specific metatranscriptome responses for resolving gene expression profiles in the in situ communities.more » « less
-
Bernstein, Hans C (Ed.)ABSTRACT The continental shelf of the Western Antarctic Peninsula (WAP) is a highly variable system characterized by strong cross-shelf gradients, rapid regional change, and large blooms of phytoplankton, notably diatoms. Rapid environmental changes coincide with shifts in plankton community composition and productivity, food web dynamics, and biogeochemistry. Despite the progress in identifying important environmental factors influencing plankton community composition in the WAP, the molecular basis for their survival in this oceanic region, as well as variations in species abundance, metabolism, and distribution, remains largely unresolved. Across a gradient of physicochemical parameters, we analyzed the metabolic profiles of phytoplankton as assessed through metatranscriptomic sequencing. Distinct phytoplankton communities and metabolisms closely mirrored the strong gradients in oceanographic parameters that existed from coastal to offshore regions. Diatoms were abundant in coastal, southern regions, where colder and fresher waters were conducive to a bloom of the centric diatom,Actinocyclus. Members of this genus invested heavily in growth and energy production; carbohydrate, amino acid, and nucleotide biosynthesis pathways; and coping with oxidative stress, resulting in uniquely expressed metabolic profiles compared to other diatoms. We observed strong molecular evidence for iron limitation in shelf and slope regions of the WAP, where diatoms in these regions employed iron-starvation induced proteins, a geranylgeranyl reductase, aquaporins, and urease, among other strategies, while limiting the use of iron-containing proteins. The metatranscriptomic survey performed here reveals functional differences in diatom communities and provides further insight into the environmental factors influencing the growth of diatoms and their predicted response to changes in ocean conditions. IMPORTANCEIn the Southern Ocean, phytoplankton must cope with harsh environmental conditions such as low light and growth-limiting concentrations of the micronutrient iron. Using metratranscriptomics, we assessed the influence of oceanographic variables on the diversity of the phytoplankton community composition and on the metabolic strategies of diatoms along the Western Antarctic Peninsula, a region undergoing rapid climate change. We found that cross-shelf differences in oceanographic parameters such as temperature and variable nutrient concentrations account for most of the differences in phytoplankton community composition and metabolism. We opportunistically characterized the metabolic underpinnings of a large bloom of the centric diatomActinocyclusin coastal waters of the WAP. Our results indicate that physicochemical differences from onshore to offshore are stronger than between southern and northern regions of the WAP; however, these trends could change in the future, resulting in poleward shifts in functional differences in diatom communities and phytoplankton blooms.more » « less
-
Abstract The colonial tunicateBotryllus schlosseriregenerates weekly through a cyclical process in which adult zooids are replaced by a new generation of buds. While this dynamic asexual development is a hallmark of the species, its molecular regulation remains poorly understood. This study presents the first comprehensive proteomic analysis ofB. schlosseriblastogenesis at the individual zooid level, using data-independent acquisition mass spectrometry to quantify protein abundance across developmental stages. The results reveal extensive proteome remodeling between proliferating buds and degenerating zooids. Co-expression analysis identified stage-specific protein modules enriched for biosynthesis and cell cycle pathways in buds, and for apoptosis, catabolism, and metabolic remodeling in zooids. A focused comparison between takeover buds and takeover zooids uncovered distinct regulatory programs controlling proliferation and senescence. Key proteins, including CDK1, CDK2, HDAC2, and PCNA, were identified as candidate regulators of cell cycle progression. These findings provide a molecular framework for understanding regeneration in a basal chordate and offer protein targets that may enable cell cycle re-entry and long-term culture of tunicate primary cells. Summary StatementThis study maps proteome dynamics during the blastogenic cycle inBotryllus schlosseri, identifying candidate proteins that regulate cell proliferation and offer targets for tunicate cell line development.more » « less
-
null (Ed.)Diatoms are major contributors to global primary production and their populations in the modern oceans are affected by availability of iron, nitrogen, phosphate, silica, and other trace metals, vitamins, and infochemicals. However, little is known about the role of phosphorylation in diatoms and its role in regulation and signaling. We report a total of 2759 phosphorylation sites on 1502 proteins detected in Phaeodactylum tricornutum. Conditionally phosphorylated peptides were detected at low iron (n = 108), during the diel cycle (n = 149), and due to nitrogen availability (n = 137). Through a multi-omic comparison of transcript, protein, phosphorylation, and protein homology, we identify numerous proteins and key cellular processes that are likely under control of phospho-regulation. We show that phosphorylation regulates: (1) carbon retrenchment and reallocation during growth under low iron, (2) carbon flux towards lipid biosynthesis after the lights turn on, (3) coordination of transcription and translation over the diel cycle and (4) in response to nitrogen depletion. We also uncover phosphorylation sites for proteins that play major roles in diatom Fe sensing and utilization, including flavodoxin and phytotransferrin (ISIP2A), as well as identify phospho-regulated stress proteins and kinases. These findings provide much needed insight into the roles of protein phosphorylation in diel cycling and nutrient sensing in diatoms.more » « less
An official website of the United States government
