skip to main content


Title: Parallel Strong Connectivity Based on Faster Reachability

Computing strongly connected components (SCC) is among the most fundamental problems in graph analytics. Given the large size of today's real-world graphs, parallel SCC implementation is increasingly important. SCC is challenging in the parallel setting and is particularly hard on large-diameter graphs. Many existing parallel SCC implementations can be even slower than Tarjan's sequential algorithm on large-diameter graphs.

To tackle this challenge, we propose an efficient parallel SCC implementation using a new parallel reachability approach. Our solution is based on a novel idea referred to as vertical granularity control (VGC). It breaks the synchronization barriers to increase parallelism and hide scheduling overhead. To use VGC in our SCC algorithm, we also design an efficient data structure called the parallel hash bag. It uses parallel dynamic resizing to avoid redundant work in maintaining frontiers (vertices processed in a round).

We implement the parallel SCC algorithm by Blelloch et al. (J. ACM, 2020) using our new parallel reachability approach. We compare our implementation to the state-of-the-art systems, including GBBS, iSpan, Multi-step, and our highly optimized Tarjan's (sequential) algorithm, on 18 graphs, including social, web, k-NN, and lattice graphs. On a machine with 96 cores, our implementation is the fastest on 16 out of 18 graphs. On average (geometric means) over all graphs, our SCC is 6.0× faster than the best previous parallel code (GBBS), 12.8× faster than Tarjan's sequential algorithms, and 2.7× faster than the best existing implementation on each graph.

We believe that our techniques are of independent interest. We also apply our parallel hash bag and VGC scheme to other graph problems, including connectivity and least-element lists (LE-lists). Our implementations improve the performance of the state-of-the-art parallel implementations for these two problems.

 
more » « less
Award ID(s):
2227669 2238358 2103483
NSF-PAR ID:
10468989
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the ACM on Management of Data
Volume:
1
Issue:
2
ISSN:
2836-6573
Page Range / eLocation ID:
1 to 29
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present shared-memory parallel methods for Maximal Clique Enumeration (MCE) from a graph. MCE is a fundamental and well-studied graph analytics task, and is a widely used primitive for identifying dense structures in a graph. Due to its computationally intensive nature, parallel methods are imperative for dealing with large graphs. However, surprisingly, there do not yet exist scalable and parallel methods for MCE on a shared-memory parallel machine. In this work, we present efficient shared-memory parallel algorithms for MCE, with the following properties: (1) the parallel algorithms are provably work-efficient relative to a state-of-the-art sequential algorithm (2) the algorithms have a provably small parallel depth, showing that they can scale to a large number of processors, and (3) our implementations on a multicore machine shows a good speedup and scaling behavior with increasing number of cores, and are substantially faster than prior shared-memory parallel algorithms for MCE. 
    more » « less
  2. Counting the frequency of subgraphs in large networks is a classic research question that reveals the underlying substructures of these networks for important applications. However, subgraph counting is a challenging problem, even for subgraph sizes as small as five, due to the combinatorial explosion in the number of possible occurrences. This article focuses on the five-cycle, which is an important special case of five-vertex subgraph counting and one of the most difficult to count efficiently. We design two new parallel five-cycle counting algorithms and prove that they are work efficient and achieve polylogarithmic span. Both algorithms are based on computing low out-degree orientations, which enables the efficient computation of directed two-paths and three-paths, and the algorithms differ in the ways in which they use this orientation to eliminate double-counting. Additionally, we present new parallel algorithms for obtaining unbiased estimates of five-cycle counts using graph sparsification. We develop fast multicore implementations of the algorithms and propose a work scheduling optimization to improve their performance. Our experiments on a variety of real-world graphs using a 36-core machine with two-way hyper-threading show that our best exact parallel algorithm achieves 10–46× self-relative speedup, outperforms our serial benchmarks by 10–32×, and outperforms the previous state-of-the-art serial algorithm by up to 818×. Our best approximate algorithm, for a reasonable probability parameter, achieves up to 20× self-relative speedup and is able to approximate five-cycle counts 9–189× faster than our best exact algorithm, with between 0.52% and 11.77% error. 
    more » « less
  3. We present shared memory parallel algorithms for maximal biclique enumeration (MBE), the task of enumerating all complete dense subgraphs (maximal bicliques) from a bipartite graph, which is widely used in the analysis of social, biological, and transactional networks. Since MBE is computationally expensive, it is necessary to use parallel computing to scale to large graphs. Our parallel algorithm ParMBE efficiently uses the power of multiple cores that share memory. From a theoretical view, ParMBE is work-efficient with respect to a state-of-the-art sequential algorithm. Our experimental evaluation shows that ParMBE scales well up to 64 cores, and is significantly faster than current parallel algorithms. Since ParMBE was yielding a super-linear speedup compared to the sequential algorithm on which it was based (MineLMBC), we develop an improved sequential algorithm FMBE, through "sequentializing" ParMBE. 
    more » « less
  4. Computing the single-source shortest path (SSSP) is one of the fundamental graph algorithms, and is used in many applications. Here, we focus on computing SSSP on large dynamic graphs, i.e. graphs whose structure evolves with time. We posit that instead of recomputing the SSSP for each set of changes on the dynamic graphs, it is more efficient to update the results based only on the region of change. To this end, we present a novel two-step shared-memory algorithm for updating SSSP on weighted large-scale graphs. The key idea of our algorithm is to identify changes, such as vertex/edge addition and deletion, that affect the shortest path computations and update only the parts of the graphs affected by the change. We provide the proof of correctness of our proposed algorithm. Our experiments on real and synthetic networks demonstrate that our algorithm is as much as 4X faster compared to computing SSSP with Galois, a state-of-the-art parallel graph analysis software for shared memory architectures. We also demonstrate how increasing the asynchrony can lead to even faster updates. To the best of our knowledge, this is one of the first practical parallel algorithms for updating networks on shared-memory systems, that is also scalable to large networks. 
    more » « less
  5. Finding connected components in a graph is a fundamental problem in graph analysis. In this work, we present a novel minimum-mapping based Contour algorithm to efficiently solve the connectivity problem. We prove that the Contour algorithm with two or higher order operators can identify all connected components of an undirected graph within O(log d_max) iterations, with each iteration involving O(m) work, where d_max represents the largest diameter among all components in the given graph, and m is the total number of edges in the graph. Importantly, each iteration is highly parallelizable, making use of the efficient minimum-mapping operator applied to all edges. To further enhance its practical performance, we optimize the Contour algorithm through asynchronous updates, early convergence checking, eliminating atomic operations, and choosing more efficient mapping operators. Our implementation of the Contour algorithm has been integrated into the open-source framework Arachne. Arachne extends Arkouda for large-scale interactive graph analytics, providing a Python API powered by the high-productivity parallel language Chapel. Experimental results on both real-world and synthetic graphs demonstrate the superior performance of our proposed Contour algorithm compared to state-of-the-art large-scale parallel algorithm FastSV and the fastest shared memory algorithm ConnectIt. On average, Contour achieves a speedup of 7.3x and 1.4x compared to FastSV and ConnectIt, respectively. All code for the Contour algorithm and the Arachne framework is publicly available on GitHub {https://github.com/Bears-R-Us/arkouda-njit), ensuring transparency and reproducibility of our work. 
    more » « less