skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: R-process Nucleosynthesis of Subminimal Neutron Star Explosions
Abstract We show that a minimum-mass neutron star undergoes delayed explosion after mass removal from its surface. We couple the Newtonian hydrodynamics to a nuclear reaction network of ∼4500 isotopes to study the nucleosynthesis and neutrino emission during the explosion. An electron antineutrino burst with a peak luminosity of ∼3 × 1050erg s−1is emitted while the ejecta is heated to ∼109K. A robustr-process nucleosynthesis is realized in the ejecta. Lanthanides and heavy elements near the second and thirdr-process peaks are synthesized as end products of nucleosynthesis, suggesting that subminimal neutron star explosions could be an important source of solar chemical elements.  more » « less
Award ID(s):
2316807
PAR ID:
10469012
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
956
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 115
Size(s):
Article No. 115
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present nucleosynthesis and light-curve predictions for a new site of the rapid neutron capture process (r-process) from magnetar giant flares (GFs). Motivated by observations indicating baryon ejecta from GFs, J. Cehula et al. proposed that mass ejection occurs after a shock is driven into the magnetar crust during the GF. We confirm using nuclear reaction network calculations that these ejecta synthesize moderate yields of third-peakr-process nuclei and more substantial yields of lighterr-nuclei, while leaving a sizable abundance of free neutrons in the outermost fastest expanding ejecta layers. The finalr-process mass fraction and distribution are sensitive to the relative efficiencies ofα-capture andn-capture freeze-outs. We use our nucleosynthesis output in a semianalytic model to predict the light curves of novae breves, the transients following GFs powered by radioactive decay. For a baryonic ejecta mass similar to that inferred of the 2004 Galactic GF from SGR 1806-20, we predict a peak UV/optical luminosity of ∼1039–1040erg s−1at ∼10–15 minutes, rendering such events potentially detectable to several Mpc following a gamma-ray trigger by wide-field transient monitors such as ULTRASAT/UVEX. The peak luminosity and timescale of the transient increase with the GF strength due to the larger ejecta mass. Although GFs likely contribute 1%–10% of the total Galacticr-process budget, their short delay-times relative to star formation make them an attractive source to enrich the earliest generations of stars. 
    more » « less
  2. Abstract We present a 3D general-relativistic magnetohydrodynamic simulation of a short-lived neutron star remnant formed in the aftermath of a binary neutron star merger. The simulation uses an M1 neutrino transport scheme to track neutrino–matter interactions and is well suited to studying the resulting nucleosynthesis and kilonova emission. A magnetized wind is driven from the remnant and ejects neutron-rich material at a quasi-steady-state rate of 0.8 × 10−1Ms−1. We find that the ejecta in our simulations underproducer-process abundances beyond the secondr-process peak. For sufficiently long-lived remnants, these outflowsalonecan produce blue kilonovae, including the blue kilonova component observed for AT2017gfo. 
    more » « less
  3. Abstract Core-collapse supernovae (SNe) are candidate sites for rapid neutron capture process (r-process) nucleosynthesis. We explore the effects of enrichment fromr-process nuclei on the light curves of hydrogen-rich SNe and assess the detectability of these signatures. We modify the radiation hydrodynamics code, SuperNova Explosion Code, to include the approximate effects of opacity and radioactive heating fromr-process elements in the supernova (SN) ejecta. We present models spanning a range of totalr-process massesMrand their assumed radial distribution within the ejecta, finding thatMr≳ 10−2Mis sufficient to induce appreciable differences in their light curves as compared to ordinary hydrogen-rich SNe (without anyr-process elements). The primary photometric signatures ofr-process enrichment include a shortening of the plateau phase, coinciding with the hydrogen-recombination photosphere retreating to ther-process-enriched layers, and a steeper post-plateau decline associated with a reddening of the SN colors. We compare ourr-process-enriched models to ordinary SNe models and observational data, showing that yields ofMr≳ 10−2Mare potentially detectable across several of the metrics used by transient observers, provided thatr-process-rich layers are mixed at least halfway to the ejecta surface. This detectability threshold can roughly be reproduced analytically using a two-zone (kilonova-within-an-SN) picture. Assuming that a small fraction of SNe produce a detectabler-process yield ofMr≳ 10−2M, and respecting constraints on the total Galactic production rate, we estimate that ≳103–104SNe need be observed to find oner-enriched event, a feat that may become possible with the Vera Rubin Observatory. 
    more » « less
  4. Abstract Understanding the details ofr-process nucleosynthesis in binary neutron star merger (BNSM) ejecta is key to interpreting kilonova observations and identifying the role of BNSMs in the origin of heavy elements. We present a self-consistent, two-dimensional, ray-by-ray radiation-hydrodynamic evolution of BNSM ejecta with an online nuclear network (NN) up to a timescale of days. For the first time, an initial numerical relativity ejecta profile composed of the dynamical component and spiral-wave and disk winds is evolved including detailedr-process reactions and nuclear heating effects. A simple model for the jet energy deposition is also included. Our simulation highlights that the common approach of relating in postprocessing the final nucleosynthesis yields to the initial thermodynamic profile of the ejecta can lead to inaccurate predictions. Moreover, we find that neglecting the details of the radiation-hydrodynamic evolution of the ejecta in nuclear calculations can introduce deviations of up to 1 order of magnitude in the final abundances of several elements, including very light and secondr-process peak elements. The presence of a jet affects element production only in the innermost part of the polar ejecta, and it does not alter the global nucleosynthesis results. Overall, our analysis shows that employing an online NN improves the reliability of nucleosynthesis and kilonova light-curve predictions. 
    more » « less
  5. Abstract We study the production of very light elements (Z< 20) in the dynamical and spiral-wave wind ejecta of binary neutron star mergers by combining detailed nucleosynthesis calculations with the outcome of numerical relativity merger simulations. All our models are targeted to GW170817 and include neutrino radiation. We explore different finite-temperature, composition-dependent nuclear equations of state, and binary mass ratios, and find that hydrogen and helium are the most abundant light elements. For both elements, the decay of free neutrons is the driving nuclear reaction. In particular, ∼0.5–2 × 10−6Mof hydrogen are produced in the fast expanding tail of the dynamical ejecta, while ∼1.5–11 × 10−6Mof helium are synthesized in the bulk of the dynamical ejecta, usually in association with heavyr-process elements. By computing synthetic spectra, we find that the possibility of detecting hydrogen and helium features in kilonova spectra is very unlikely for fiducial masses and luminosities, even when including nonlocal thermodynamic equilibrium effects. The latter could be crucial to observe helium lines a few days after merger for faint kilonovae or for luminous kilonovae ejecting large masses of helium. Finally, we compute the amount of strontium synthesized in the dynamical and spiral-wave wind ejecta, and find that it is consistent with (or even larger than, in the case of a long-lived remnant) the one required to explain early spectral features in the kilonova of GW170817. 
    more » « less