skip to main content


Title: Interspecific Differences in the Flow Regimes and Drag of North Pacific Skate Egg Cases
Synopsis

Skates are a diverse group of dorso-ventrally compressed cartilaginous fish found primarily in high-latitude seas. These slow-growing oviparous fish deposit their fertilized eggs into cases, which then rest on the seafloor. Developing skates remain in their cases for 1–4 years after they are deposited, meaning the abiotic characteristics of the deposition sites, such as current and substrate type, must interact with the capsule in a way to promote long residency. Egg cases are morphologically variable and can be identified to species. Both the gross morphology and the microstructures of the egg case interact with substrate to determine how well a case stays in place on a current-swept seafloor. Our study investigated the egg case hydrodynamics of eight North Pacific skate species to understand how their morphology affects their ability to stay in place. We used a flume to measure maximum current velocity, or “break-away velocity,” each egg case could withstand before being swept off the substrate and a tilt table to measure the coefficient of static friction between each case and the substrate. We also used the programing software R to calculate theoretical drag on the egg cases of each species. For all flume trials, we found the morphology of egg cases and their orientation to flow to be significantly correlated with break-away velocity. In certain species, the morphology of the egg case was correlated with flow rate required to dislodge a case from the substrate in addition to the drag experienced in both the theoretical and flume experiments. These results effectively measure how well the egg cases of different species remain stationary in a similar habitat. Parsing out attachment biases and discrepancies in flow regimes of egg cases allows us to identify where we are likely to find other elusive species nursery sites. These results will aid predictive models for locating new nursery habitats and protective policies for avoiding the destruction of these nursery sites.

 
more » « less
NSF-PAR ID:
10469053
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Integrative And Comparative Biology
Volume:
62
Issue:
3
ISSN:
1540-7063
Format(s):
Medium: X Size: p. 805-816
Size(s):
p. 805-816
Sponsoring Org:
National Science Foundation
More Like this
  1. Apparent egg cannibalism was investigated in the beach‐spawning California grunionLeuresthes tenuis. Three hypotheses were tested to determine whetherL. tenuisregularly consumes and efficiently digests conspecific eggs. First, examination of the gut contents of adults collected at four spawning sites over two seasons showed that the intestines of most fish from all the sites (57–87%,n≥ 30, each site) containedL. tenuiseggs. The two other hypotheses focused on digestion of the eggs. First, the force required to crush cannibalized eggs was significantly less than that for uncannibalized eggs (fertilized or unfertilized), indicating that ingestion weakens the egg chorions. Second, conspecific eggs fed to fish held in the laboratory visibly degraded as they passed through the gut. The eggs lostc. half of their protein content and about two‐thirds of their lipid content as they passed from proximal to distal regions of the gut, indicating that digestion occurred. Digestive enzyme activities of the gut further confirmed thatL. tenuiscan break down the contents of ingested eggs. Trypsin activity decreased and aminopeptidase activity increased posteriorly along the gut, whereas amylase and lipase activities exhibited less clear patterns by gut region. As far as is known, this study is the first to show thatL. tenuisis an egg cannibal.

     
    more » « less
  2. Synopsis

    The scales and skin mucus of bony fishes are both proposed to have a role in beneficially modifying the hydrodynamics of water flow over the body surface. However, it has been challenging to provide direct experimental evidence that tests how mucus and fish scales change the boundary layer in part due to the difficulties in working with live animal tissue and difficulty directly imaging the boundary layer. In this manuscript, we use direct imaging and flow tracking within the boundary layer to compare boundary layer dynamics over surfaces of fish skin with mucus, without mucus, and a flat control surface. Our direct measurements of boundary layer flows for these three different conditions are repeated for two different species, bluegill sunfish (Lepomis macrochirus) and blue tilapia (Oreochromis aureus). Our goals are to understand if mucus and scales reduce drag, shed light on mechanisms underlying drag reduction, compare these results between species, and evaluate the relative contributions to hydrodynamic function for both mucus and scales. We use our measurements of boundary layer flow to calculate shear stress (proportional to friction drag), and we find that mucus reduces drag overall by reducing the velocity gradient near the skin surface. Both bluegill and tilapia showed similar patterns of surface velocity reduction. We also note that scales alone do not appear to reduce drag, but that mucus may reduce friction drag up to 50% compared to scaled surfaces without mucus or flat controls.

     
    more » « less
  3. Abstract

    In riverine ecosystems, downstream drag caused by fast‐flowing water poses a significant challenge to rheophilic organisms. In neotropical rivers, many members of a diverse radiation of suckermouth catfishes (Loricarioidei) resist drag in part by using modified lips that form an oral suction cup composed of thick flesh. Histological composition and morphology of this cup are interspecifically highly variable. Through an examination of 23 loricarioid species, we determined that the tissue most responsible for lip fleshiness is collagen. We hypothesized that lip collagen content is interspecifically correlated with substrate and flow so that fishes living on rocky substrates in high‐flow environments have the largest, most collagenous lips. By mapping the amount and distribution of lip collagen onto a phylogeny and conducting ANOVA tests, we found support for this hypothesis. Moreover, these traits evolved multiple times in correlation with substrate and flow, suggesting they are an effective means for improving suction‐based attachment. We hypothesize that collagen functions to reinforce oral suction cups, reducing the likelihood of slipping, buckling, and failure under high‐flow, high‐drag conditions. Macroevolutionary patterns among loricarioid catfishes suggest that for maximum performance, biomimetic suction cups should vary in material density according to drag and substrate requirements.

     
    more » « less
  4. Coastal and estuarine habitats that provide crucial nursery areas for many economically and ecologically important fish species are in decline. Restoration of benthic habitats can improve fish populations, biomass, and feeding opportunities, but there is limited research on how restoration impacts growth and survival with ontogeny. To address this knowledge gap, here we examine the biometrics (size, biomass, and body condition), recruitment, size structure, and trophic shifts of a sportfish (mangrove snapper,Lutjanus griseus) at restored oyster reefs and stabilized living shorelines to better understand how fish use restored habitats as they grow. Biomass and body condition ofL. griseusjuveniles and subadults, and post‐settlement recruitment, at restored/stabilized sites was similar, and in some cases greater than natural sites, correlating with benthic habitat, reef location, and lunar phase at oyster reefs. Living shorelines exhibited greater recruitment potential, while oyster reefs supported more juveniles and subadults, as evidenced by differences in fish size and biomass between habitats. Dietary overlap implies subadultL. griseuslikely foraged across habitats more than juveniles, while there was greater diet similarity within habitats. Furthermore, ontogenetic shifts also occurred within oyster reef habitats, highlighting the importance of quality habitat to support various sportfish life stages, which can be achieved through restoration. These findings suggest life history attributes can be indicators of habitat restoration success, and specifically provide actionable science to guide the development of more effective strategies for restoring inshore nursery habitats and thus augment production of offshore reef fisheries.

     
    more » « less
  5. Synopsis

    Armor is a multipurpose set of structures that has evolved independently at least 30 times in fishes. In addition to providing protection, armor can manipulate flow, increase camouflage, and be sexually dimorphic. There are potential tradeoffs in armor function: increased impact resistance may come at the cost of maneuvering ability; and ornate armor may offer visual or protective advantages, but could incur excess drag. Pacific spiny lumpsuckers (Eumicrotremus orbis) are covered in rows of odontic, cone-shaped armor whorls, protecting the fish from wave driven impacts and the threat of predation. We are interested in measuring the effects of lumpsucker armor on the hydrodynamic forces on the fish. Bigger lumpsuckers have larger and more complex armor, which may incur a greater hydrodynamic cost. In addition to their protective armor, lumpsuckers have evolved a ventral adhesive disc, allowing them to remain stationary in their environment. We hypothesize a tradeoff between the armor and adhesion: little fish prioritize suction, while big fish prioritize protection. Using micro-CT, we compared armor volume to disc area over lumpsucker development and built 3D models to measure changes in drag over ontogeny. We found that drag and drag coefficients decrease with greater armor coverage and vary consistently with orientation. Adhesive disc area is isometric but safety factor increases with size, allowing larger fish to remain attached in higher flows than smaller fish.

     
    more » « less