skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Role of Serotonergic Gene Methylation in Regulating Anxiety-Related Personality Traits in Chimpanzees
While low serotonergic activity is often associated with psychological disorders such as depression, anxiety, mood, and personality disorders, variations in serotonin also contribute to normal personality differences. In this study, we investigated the role of blood DNA methylation levels at individual CpG sites of two key serotonergic genes (serotonin receptor gene 1A, HTR1A; serotonin transporter gene, SLC6A4) in predicting the personalities of captive chimpanzees. We found associations between methylation at 9/48 CpG sites with four personality dimensions: Dominance, Reactivity/Dependability, Agreeableness, and Openness. Directionality of effects were CpG location-dependent and confirmed a role of serotonergic methylation in reducing anxiety (Dominance) and aggression-related personality (Reactivity/Undependability) while simultaneously promoting prosocial (Agreeableness) and exploratory personalities (Openness). Although early-life adversity has been shown to impact serotonergic methylation patterns in other species, here, atypical early social rearing experiences only had a modest impact on CpG methylation levels in this chimpanzee sample. The precise environmental factors impacting serotonergic methylation in chimpanzees remain to be identified. Nevertheless, our study suggests a role in shaping natural variation in animal personalities. The results of this study offer a basis for future hypothesis-driven testing in additional populations and species to better understand the impact of ecology and evolution on complex behavioral traits.  more » « less
Award ID(s):
2021785
PAR ID:
10469123
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Biology
Volume:
11
Issue:
11
ISSN:
2079-7737
Page Range / eLocation ID:
1673
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    BACKGROUND: Children born prematurely (<37 gestational weeks) are at risk for a variety of adverse medical events. They may experience ischemic and/or hemorrhagic events leading to negative neural sequelae. They are also exposed to repeated stressful experiences as part of life-saving care within the neonatal intensive care unit (NICU). These experiences have been associated with methylation of SLC6A4, a gene which codes for serotonin transport proteins, and is associated with anxiety, depression, and increased incidence of autism spectrum disorders. The purpose of this study was to examine the effects of altered serotonin levels on behavioral and neuroanatomical outcomes in a neonatal rodent model with or without exposure to hypoxic-ischemic (HI) injury. METHODS: Wistar rat pups were randomly assigned to either HI injury or sham groups. Pups within each group were treated with a chronic SSRI (Citalopram HBr) to simulate the effects of SLC6A4 methylation, or saline (NS). Subjects were assessed on behavioral tasks and neuropathologic indices. RESULTS: HI injured subjects performed poorly on behavioral tasks. SSRI subjects did not display significantly greater anxiety. HI + SSRI subjects learned faster than HI+NS. Histologically, SSRI subjects had predominantly larger brain volumes than NS. CONCLUSION: SSRI treated subjects without injury showed patterns of increased anxiety, consistent with theories of SLC6A4 methylation. The paradoxical trend to improved cognition in HI+SSRI subjects relative to HI alone, may reflect an unexpected SSRI neuroprotective effect in the presence of injury, and may be related to serotonin-induced neurogenesis. 
    more » « less
  2. Previously identified differences in serotonin innervation have been proposed to underlie differences in behavior, such as personality style and sociability. Contrasting serotonergic fiber densities have been found in the amygdala of chimpanzees versus bonobos, and humans and apes are known to have more serotonin than monkeys in the dorsal and medial caudate nucleus and dorsal putamen. Our present work builds on earlier results by examining serotonergic axon innervation density in the nucleus accumbens and ventral pallidum, two important nodes in the reward system. The present sample included humans (n = 6; NIH NeuroBioBank), pigtailed macaque monkeys (n = 5; National Primate Research Center, University of Washington), and capuchin monkeys (n = 6; Alpha Genesis). All individuals were adult and free of neuropathological alterations. Brain sections were immunohistochemically processed for serotonin transporter (SERT) (Millipore, MAB 5618), and stereological methods (SpaceBalls probe, MBF Bioscience) were used to quantify the length density of SERT-immunoreactive axons and neuron densities from adjacent Nissl-stained sections. Repeated measures ANOVA was used to evaluate differences of SERT-immunoreactive axon densities and neuron densities among species. The main effect of brain region was significant (F 1,2 = 12.25, p = 0.004) with greater SERT innervation in ventral pallidum compared to the nucleus accumbens in all species. The main effect of species and the interaction of species x brain region were not significant. Based on these results, the serotonergic system in the nucleus accumbens and ventral pallidum appears to be evolutionarily conserved in the amount of innervation supplied to neurons among human and other anthropoid primates. 
    more » « less
  3. null (Ed.)
    The study examines the relationship between the big five personality traits (extroversion, agreeableness, conscientiousness, neuroticism, and openness) and robot likeability and successful HRI implementation in varying human-robot interaction (HRI) situations. Further, this research investigates the influence of human-like attributes in robots (a.k.a. robotic anthropomorphism) on the likeability of robots. The research found that robotic anthropomorphism positively influences the relationship between human personality variables (e.g., extraversion and agreeableness) and robot likeability in human interaction with social robots. Further, anthropomorphism positively influences extraversion and robot likeability during industrial robotic interactions with humans. Extraversion, agreeableness, and neuroticism were found to play a significant role. This research bridges the gap by providing an in-depth understanding of the big five human personality traits, robotic anthropomorphism, and robot likeability in social-collaborative robotics. 
    more » « less
  4. Literature has consistently pointed to the significant role of personality in students’ decisions to participate in study abroad programs. Studies have highlighted how such experiences are impacted by key personality traits such as extraversion, agreeableness, and neuroticism, and social traits such as social information processing, social skills, and social awareness. Yet there remains a notable gap in the limited examination of students’ personality attributes and their impact on study abroad outcomes. To address this gap, this study investigates the effects of students’ personality attributes and demographic attributes on their transformative learning experiences during their study abroad programs using Mezirow’s transformative learning theory. The research integrates quantitative data collected through instruments. Qualitative insights gathered from open-ended questions in the survey to comprehensively investigate important associations between student attributes and their transformative learning experiences during study abroad programs. Results showed that personality traits, particularly openness and agreeableness, and social skills (a social intelligence scale construct) had a strong correlation with different phases of the journey of transformation. Additionally, the results indicated a potential association between students’ academic majors and the likelihood of experiencing shifts in their epistemic dimension of habits of mind during their respective short-term study abroad programs. 
    more » « less
  5. Abstract Serotonergic neurons produce extensively branched axons that fill most of the central nervous system, where they modulate a wide variety of behaviors. Many behavioral disorders have been correlated with defective serotonergic axon morphologies. Proper behavioral output therefore depends on the precise outgrowth and targeting of serotonergic axons during development. To direct outgrowth, serotonergic neurons utilize serotonin as a signaling molecule prior to it assuming its neurotransmitter role. This process, termed serotonin autoregulation, regulates axon outgrowth, branching, and varicosity development of serotonergic neurons. However, the receptor that mediates serotonin autoregulation is unknown. Here we asked if serotonin receptor 5‐HT1A plays a role in serotonergic axon outgrowth and branching. Using culturedDrosophilaserotonergic neurons, we found that exogenous serotonin reduced axon length and branching only in those expressing 5‐HT1A. Pharmacological activation of 5‐HT1A led to reduced axon length and branching, whereas the disruption of 5‐HT1A rescued outgrowth in the presence of exogenous serotonin. Altogether this suggests that 5‐HT1A is a serotonin autoreceptor in a subpopulation of serotonergic neurons and initiates signaling pathways that regulate axon outgrowth and branching duringDrosophiladevelopment. 
    more » « less