skip to main content

This content will become publicly available on July 1, 2024

Title: Spectral stacking of radio-interferometric data

Context.Mapping molecular line emission beyond the bright low-JCO transitions is still challenging in extragalactic studies, even with the latest generation of (sub-)millimetre interferometers, such as ALMA and NOEMA.

Aims.We summarise and test a spectral stacking method that has been used in the literature to recover low-intensity molecular line emission, such as HCN(1−0), HCO+(1−0), and even fainter lines in external galaxies. The goal is to study the capabilities and limitations of the stacking technique when applied to imaged interferometric observations.

Methods.The core idea of spectral stacking is to align spectra of the low S/N spectral lines to a known velocity field calculated from a higher S/N line expected to share the kinematics of the fainter line (e.g. CO(1−0) or 21 cm emission). Then these aligned spectra can be coherently averaged to produce potentially high S/N spectral stacks. Here we used imaged simulated interferometric and total power observations at different S/N levels, based on real CO observations.

Results.For the combined interferometric and total power data, we find that the spectral stacking technique is capable of recovering the integrated intensities even at low S/N levels across most of the region where the high S/N prior is detected. However, when stacking interferometer-only data for low S/N emission, the stacks can miss up to 50% of the emission from the fainter line.

Conclusions.A key result of this analysis is that the spectral stacking method is able to recover the true mean line intensities in low S/N cubes and to accurately measure the statistical significance of the recovered lines. To facilitate the application of this technique we provide a public Python package, called PYSTACKER.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Date Published:
Journal Name:
Astronomy & Astrophysics
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Existing star-forming vs. active galactic nucleus (AGN) classification schemes using optical emission-line diagnostics mostly fail for low-metallicity and/or highly star-forming galaxies, missing AGN in typicalz∼ 0 dwarfs. To recover AGN in dwarfs with strong emission lines (SELs), we present a classification scheme optimizing the use of existing optical diagnostics. We use Sloan Digital Sky Survey emission-line catalogs overlapping the volume- and mass-limited REsolved Spectroscopy Of a Local VolumE (RESOLVE) and Environmental COntex (ECO) surveys to determine the AGN percentage in SEL dwarfs. Our photoionization grids show that the [Oiii]/Hβversus [Sii]/Hαdiagram (Siiplot) and [Oiii]/Hβversus [Oi]/Hαdiagram (Oiplot) are less metallicity sensitive and more successful in identifying dwarf AGN than the popular [Oiii]/Hβversus [Nii]/Hαdiagnostic (Niiplot or “BPT diagram”). We identify a new category of “star-forming AGN” (SF-AGN) classified as star-forming by the Niiplot but as AGN by the Siiand/or Oiplots. Including SF-AGN, we find thez∼ 0 AGN percentage in dwarfs with SELs to be ∼3%–16%, far exceeding most previous optical estimates (∼1%). The large range in our dwarf AGN percentage reflects differences in spectral fitting methodologies between catalogs. The highly complete nature of RESOLVE and ECO allows us to normalize strong emission-line galaxy statistics to the full galaxy population, reducing the dwarf AGN percentage to ∼0.6%–3.0%. The newly identified SF-AGN are mostly gas-rich dwarfs with halo mass <1011.5M, where highly efficient cosmic gas accretion is expected. Almost all SF-AGN also have low metallicities (Z≲ 0.4Z), demonstrating the advantage of our method.

    more » « less
  2. Abstract

    We present a new upper limit on the cosmic molecular gas density atz= 2.4–3.4 obtained using the first year of observations from the CO Mapping Array Project (COMAP). COMAP data cubes are stacked on the 3D positions of 243 quasars selected from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) catalog, yielding a 95% upper limit for flux from CO(1–0) line emission of 0.129 Jy km s−1. Depending on the balance of the emission between the quasar host and its environment, this value can be interpreted as an average CO line luminosityLCOof eBOSS quasars of ≤1.26 × 1011K km pc2s−1, or an average molecular gas densityρH2in regions of the Universe containing a quasar of ≤1.52 × 108McMpc−3. TheLCOupper limit falls among CO line luminosities obtained from individually targeted quasars in the COMAP redshift range, and theρH2value is comparable to upper limits obtained from other line intensity mapping (LIM) surveys and their joint analyses. Further, we forecast the values obtainable with the COMAP/eBOSS stack after the full 5 yr COMAP Pathfinder survey. We predict that a detection is probable with this method, depending on the CO properties of the quasar sample. Based on the achieved sensitivity, we believe that this technique of stacking LIM data on the positions of traditional galaxy or quasar catalogs is extremely promising, both as a technique for investigating large galaxy catalogs efficiently at high redshift and as a technique for bolstering the sensitivity of LIM experiments, even with a fraction of their total expected survey data.

    more » « less
  3. Abstract

    Using deep near-infrared Keck/MOSFIRE observations, we analyze the rest-optical spectra of eight star-forming galaxies in the COSMOS and GOODS-N fields. We reach integration times of ∼10 hr in the deepest bands, pushing the limits on current ground-based observational capabilities. The targets fall into two redshift bins, of five galaxies atz∼ 1.7 and three galaxies atz∼ 2.5, and were selected as likely to yield significant auroral-line detections. Even with long integration times, detection of the auroral lines remains challenging. We stack the spectra together into subsets based on redshift, improving the signal-to-noise ratio on the [Oiii]λ4364 auroral emission line and, in turn, enabling a direct measurement of the oxygen abundance for each stack. We compare these measurements to commonly employed strong-line ratios alongside measurements from the literature. We find that the stacks fall within the distribution ofz> 1 literature measurements, but a larger sample size is needed to robustly constrain the relationships between strong-line ratios and oxygen abundance at high redshift. We additionally report detections of [Oi]λ6302 for nine individual galaxies and composite spectra of 21 targets in the MOSFIRE pointings. We plot their line ratios on the [Oiii]λ5008/Hβversus [Oi]λ6302/Hαdiagnostic diagram, comparing our targets to local galaxies and Hiiregions. We find that the [Oi]/Hαratios in our sample of galaxies are consistent with being produced in gas ionized byα-enhanced massive stars, as has been previously inferred for rapidly forming galaxies at early cosmic times.

    more » « less
  4. Context.Recently, sensitive wide-bandwidth receivers in the millimetre regime have enabled us to combine large spatial and spectral coverage for observations of molecular clouds. The resulting capability to map the distributions of lines from many molecules simultaneously yields unbiased coverage of the various environments within star-forming regions.

    Aims.Our aim is to identify the dominant molecular cooling lines and characteristic emission features in the 1.3 mm window of distinct regions in the northern part of the Orion A molecular cloud. By defining and analysing template regions, we also intend to help with the interpretation of observations from more distant sources which cannot be easily spatially resolved.

    Methods.We analyse an imaging line survey covering the area of OMC-1 to OMC-3 from 200.2 to 281.8 GHz obtained with the PI230 receiver at the APEX telescope. Masks are used to define regions with distinct properties (e.g. column density or temperature ranges) from which we obtain averaged spectra. Lines of 29 molecular species (55 isotopologues) are fitted for each region to obtain the respective total intensity.

    Results.We find that strong sources like Orion KL have a clear impact on the emission on larger scales. Although not spatially extended, their line emission contributes substantially to spectra averaged over large regions. Conversely, the emission signatures of dense, cold regions like OMC-2 and OMC-3 (e.g. enhanced N2H+emission and low HCN/HNC ratio) seem to be difficult to pick up on larger scales, where they are eclipsed by signatures of stronger sources. In all regions, HCO+appears to contribute between 3 and 6% to the total intensity, the most stable value for all bright species. N2H+shows the strongest correlation with column density, but not with typical high-density tracers like HCN, HCO+, H2CO, or HNC. Common line ratios associated with UV illumination, CN/HNC and CN/HCO+, show ambiguous results on larger scales, suggesting that the identification of UV illuminated material may be more challenging. The HCN/HNC ratio may be related to temperature over varying scales.

    more » « less
  5. We present Atacama Large Millimeter/submillimeter Array (ALMA) sub-kiloparsec- to kiloparsec-scale resolution observations of the [C II], CO (9–8), and OH+(11–01) lines along with their dust continuum emission toward the far-infrared (FIR) luminous quasar SDSS J231038.88+185519.7 atz = 6.0031, to study the interstellar medium distribution, the gas kinematics, and the quasar-host system dynamics. We decompose the intensity maps of the [C II] and CO (9–8) lines and the dust continuum with two-dimensional elliptical Sérsic models. The [C II] brightness follows a flat distribution with a Sérsic index of 0.59. The CO (9–8) line and the dust continuum can be fit with an unresolved nuclear component and an extended Sérsic component with a Sérsic index of ∼1, which may correspond to the emission from an active galactic nucleus dusty molecular torus and a quasar host galaxy, respectively. The different [C II] spatial distribution may be due to the effect of the high dust opacity, which increases the FIR background radiation on the [C II] line, especially in the galaxy center, significantly suppressing the [C II] emission profile. The dust temperature drops with distance from the center. The effective radius of the dust continuum is smaller than that of the line emission and the dust mass surface density, but is consistent with that of the star formation rate surface density. This may indicate that the dust emission is a less robust tracer of the dust and gas distribution but is a decent tracer of the obscured star formation activity. The OH+(11–01) line shows a P-Cygni profile with an absorption at ∼–400 km s−1, which may indicate an outflow with a neutral gas mass of (6.2 ± 1.2)×108Malong the line of sight. We employed a three-dimensional tilted ring model to fit the [C II] and CO (9–8) data cubes. The two lines are both rotation dominated and trace identical disk geometries and gas motions. This suggest that the [C II] and CO (9–8) gas are coplanar and corotating in this quasar host galaxy. The consistent circular velocities measured with [C II] and CO (9–8) lines indicate that these two lines trace a similar gravitational potential. We decompose the circular rotation curve measured from the kinematic model fit to the [C II] line into four matter components (black hole, stars, gas, and dark matter). The quasar-starburst system is dominated by baryonic matter inside the central few kiloparsecs. We constrain the black hole mass to be 2.97+0.51-0.77 × 109M; this is the first time that the dynamical mass of a black hole has been measured atz ∼ 6. This mass is consistent with that determined using the scaling relations from quasar emission lines. A massive stellar component (on the order of 109M) may have already existed when the Universe was only ∼0.93 Gyr old. The relations between the black hole mass and the baryonic mass of this quasar indicate that the central supermassive black hole may have formed before its host galaxy.

    more » « less