skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: DIPS-Plus: The enhanced database of interacting protein structures for interface prediction
In this work, we expand on a dataset recently introduced for protein interface prediction (PIP), the Database of Interacting Protein Structures (DIPS), to present DIPS-Plus, an enhanced, feature-rich dataset of 42,112 complexes for machine learning of protein interfaces. While the original DIPS dataset contains only the Cartesian coordinates for atoms contained in the protein complex along with their types, DIPS-Plus contains multiple residue-level features including surface proximities, half-sphere amino acid compositions, and new profile hidden Markov model (HMM)-based sequence features for each amino acid, providing researchers a curated feature bank for training protein interface prediction methods. We demonstrate through rigorous benchmarks that training an existing state-of-the-art (SOTA) model for PIP on DIPS-Plus yields new SOTA results, surpassing the performance of some of the latest models trained on residue-level and atom-level encodings of protein complexes to date.  more » « less
Award ID(s):
1759934 2308699
PAR ID:
10469164
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Scientific Data
Volume:
10
Issue:
1
ISSN:
2052-4463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Approaches to in silico prediction of protein structures have been revolutionized by AlphaFold2, while those to predict interfaces between proteins are relatively underdeveloped, owing to the overly complicated yet relatively limited data of protein–protein complexes. In short, proteins are 1D sequences of amino acids folding into 3D structures, and interact to form assemblies to function. We believe that such intricate scenarios are better modeled with additional indicative information that reflects their multi-modality nature and multi-scale functionality. To improve binary prediction of inter-protein residue-residue contacts, we propose to augment input features with multi-modal representations and to synergize the objective with auxiliary predictive tasks. (i) We first progressively add three protein modalities into models: protein sequences, sequences with evolutionary information, and structure-aware intra-protein residue contact maps. We observe that utilizing all data modalities delivers the best prediction precision. Analysis reveals that evolutionary and structural information benefit predictions on the difficult and rigid protein complexes, respectively, assessed by the resemblance to native residue contacts in bound complex structures. (ii) We next introduce three auxiliary tasks via self-supervised pre-training (binary prediction of protein-protein interaction (PPI)) and multi-task learning (prediction of inter-protein residue–residue distances and angles). Although PPI prediction is reported to benefit from predicting intercontacts (as causal interpretations), it is not found vice versa in our study. Similarly, the finer-grained distance and angle predictions did not appear to uniformly improve contact prediction either. This again reflects the high complexity of protein–protein complex data, for which designing and incorporating synergistic auxiliary tasks remains challenging. 
    more » « less
  2. Gao, Xin (Ed.)
    Abstract MotivationThe mapping from codon to amino acid is surjective due to codon degeneracy, suggesting that codon space might harbor higher information content. Embeddings from the codon language model have recently demonstrated success in various protein downstream tasks. However, predictive models for residue-level tasks such as phosphorylation sites, arguably the most studied Post-Translational Modification (PTM), and PTM sites prediction in general, have predominantly relied on representations in amino acid space. ResultsWe introduce a novel approach for predicting phosphorylation sites by utilizing codon-level information through embeddings from the codon adaptation language model (CaLM), trained on protein-coding DNA sequences. Protein sequences are first reverse-translated into reliable coding sequences by mapping UniProt sequences to their corresponding NCBI reference sequences and extracting the exact coding sequences from their GenBank format using a dynamic programming-based global pairwise alignment. The resulting coding sequences are encoded using the CaLM encoder to generate codon-aware embeddings, which are subsequently integrated with amino acid-aware embeddings obtained from a protein language model, through an early fusion strategy. Next, a window-level representation of the site of interest, retaining the full sequence context, is constructed from the fused embeddings. A ConvBiGRU network extracts feature maps that capture spatiotemporal correlations between proximal residues within the window. This is followed by a prediction head based on a Kolmogorov-Arnold network (KAN) using the derivative of gaussian wavelet transform to generate the inference for the site. The overall model, dubbed CaLMPhosKAN, performs better than the existing approaches across multiple datasets. Availability and implementationCaLMPhosKAN is publicly available at https://github.com/KCLabMTU/CaLMPhosKAN. 
    more » « less
  3. The molecular basis of protein thermal stability is only partially understood and has major significance for drug and vaccine discovery. The lack of datasets and standardized benchmarks considerably limits learning-based discovery methods. We present \texttt{HotProtein}, a large-scale protein dataset with \textit{growth temperature} annotations of thermostability, containing K amino acid sequences and K folded structures from different species with a wide temperature range. Due to functional domain differences and data scarcity within each species, existing methods fail to generalize well on our dataset. We address this problem through a novel learning framework, consisting of () Protein structure-aware pre-training (SAP) which leverages 3D information to enhance sequence-based pre-training; () Factorized sparse tuning (FST) that utilizes low-rank and sparse priors as an implicit regularization, together with feature augmentations. Extensive empirical studies demonstrate that our framework improves thermostability prediction compared to other deep learning models. Finally, we introduce a novel editing algorithm to efficiently generate positive amino acid mutations that improve thermostability. Codes are available in https://github.com/VITA-Group/HotProtein. 
    more » « less
  4. Abstract The incorporation of unnatural amino acids (Uaas) has provided an avenue for novel chemistries to be explored in biological systems. However, the successful application of Uaas is often hampered by site-specific impacts on protein yield and solubility. Although previous efforts to identify features which accurately capture these site-specific effects have been unsuccessful, we have developed a set of novel Rosetta Custom Score Functions and alternative Empirical Score Functions that accurately predict the effects of acridon-2-yl-alanine (Acd) incorporation on protein yield and solubility. Acd-containing mutants were simulated in PyRosetta, and machine learning (ML) was performed using either the decomposed values of the Rosetta energy function, or changes in residue contacts and bioinformatics. Using these feature sets, which represent Rosetta score function specific and bioinformatics-derived terms, ML models were trained to predict highly abstract experimental parameters such as mutant protein yield and solubility and displayed robust performance on well-balanced holdouts. Model feature importance analyses demonstrated that terms corresponding to hydrophobic interactions, desolvation, and amino acid angle preferences played a pivotal role in predicting tolerance of mutation to Acd. Overall, this work provides evidence that the application of ML to features extracted from simulated structural models allow for the accurate prediction of diverse and abstract biological phenomena, beyond the predictivity of traditional modeling and simulation approaches. 
    more » « less
  5. Machine learning (ML) is revolutionizing protein structural analysis, including an important subproblem of predicting protein residue contact maps, i.e., which ami-no-acid residues are in close spatial proximity given the amino-acid sequence of a protein. Despite recent progresses in ML-based protein contact prediction, predict-ing contacts with a wide range of distances (commonly classified into short-, me-dium- and long-range contacts) remains a challenge. Here, we propose a multiscale graph neural network (GNN) based approach taking a cue from multiscale physics simulations, in which a standard pipeline involving a recurrent neural network (RNN) is augmented with three GNNs to refine predictive capability for short-, medium- and long-range residue contacts, respectively. Test results on the Pro-teinNet dataset show improved accuracy for contacts of all ranges using the pro-posed multiscale RNN+GNN approach over the conventional approach, including the most challenging case of long-range contact prediction. 
    more » « less