The Genomics Education Partnership (GEP), a consortium of diverse colleges and universities, provides support for integrating genomics research into undergraduate curricula. To increase research opportunities for underrepresented students, GEP is expanding to more community colleges (CC). Genomics research, requiring only a computer with Internet access, may be particularly accessible for two-year institutions with limited research capacity and significant budget constraints. To understand how GEP supports student research at CCs, the authors analyzed student knowledge and self-reported outcomes. It was found that CC student gains were comparable to non-CC student gains, with improvements in attitudes toward science and thriving in science. The early findings suggest that the GEP model of centralized support with flexible implementation of a course-related undergraduate research experience benefits CC students and may help mitigate barriers to implementing research at CCs.
more »
« less
Taking the Next Course: Barriers and Facilitators Reported by Computer Science Majors
This research paper studies barriers to students continuing in undergraduate computing programs. On the journey to a computing profession, every course has the potential to be an off-ramp away from students’ goals. Every student who leaves a computing degree has a last class they took before not continuing, and a reason they didn’t continue. Based on qualitative analysis of open-ended questions in surveys of students in eight undergraduate computer science and engineering (CSE) courses, we identify common barriers students anticipate, and learn what encourages them to persist onto the next CSE course. For example, even for students within the major, a commonly reported barrier was the perceived inability to enroll in their next computing course due to unclear enrollment systems and requirements. We disaggregate the data by three demographic categories—race/ethnicity, gender, and admissions-type—to understand potential disparate impacts of CSE majors at our large, research- intensive university. Solutions to the reported barriers faced by students may include student-focused interventions, policy and programmatic changes at the department level, and broader institutional or external support. Keywords: 5.b.vii. Computer science, 10.f. Retention, 3. Diversity
more »
« less
- Award ID(s):
- 2137928
- PAR ID:
- 10469298
- Publisher / Repository:
- 2023 ASEE Annual Conference & Exposition
- Date Published:
- Format(s):
- Medium: X
- Location:
- Baltimore , Maryland
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This research WIP paper describes computer science undergraduate students’ perceptions of career pathways and becoming K-12 computer science teachers. Computer science (CS) education has become critical with the rapid pace of technological development to better prepare students for national technology and economic competitiveness and security. According to Code.org, 57.5% of U.S. public high schools offer foundational computer science courses in 2023; unfortunately, access to the courses remains unequal and maintains wide disparities by race/ethnicity and social class. For instance, Hispanics are 1.4 times less likely to take foundational CS courses compared to their white and Asian peers, and students with low socio-economic status are underrepresented in the overall population. The shortage of CS teachers is one of the significant barriers to why minoritized groups of students do not have equal access to learning CS. Various programmatic efforts have been implemented to address the gap, including the recruitment of undergraduate students who will earn bachelor’s degrees in computing. This approach has been considered innovative in building a new pipeline for producing highly qualified CS teachers with the ability to transform computing education and the CS teacher community rather than training in-service teachers certified in other disciplines to receive credentials to teach CS. Studies report that CS degree recipients opt for industry roles and exhibit disinterest in alternative career pathways, such as teaching because they perceive this profession as having lower salaries and unfavorable aspects associated with the job. However, we need a more prosperous and in-depth understanding of why CS degree holders consider industry jobs of greater importance rather than teaching, which would reduce the disparity in K-12 computing education. As a first attempt to better understand the perceptions of computer science undergraduate students at an Hispanic-Serving Institution (HSI), we collected qualitative data (i.e., student artifacts) in a course offered in the computer science department. Driven by social cognitive career and FIT-choice theory, our findings from the preliminary analysis indicate that CS undergraduate students at an HSI acknowledged the importance of K-12 CS teachers in their communities, but at the same time, they have more concerns about the underpayment and undervaluation of the job. They have shown a conflict between their perceptions of teaching CS and their own career aspirations as CS teachers. These preliminary findings draw attention to the importance of uncovering common career plans among CS undergraduate students.more » « less
-
This research WIP paper describes computer science undergraduate students’ perceptions of career pathways and becoming K-12 computer science teachers. Computer science (CS) education has become critical with the rapid pace of technological development to better prepare students for national technology and economic competitiveness and security. According to Code.org, 57.5% of U.S. public high schools offer foundational computer science courses in 2023; unfortunately, access to the courses remains unequal and maintains wide disparities by race/ethnicity and social class. For instance, Hispanics are 1.4 times less likely to take foundational CS courses compared to their white and Asian peers, and students with low socio-economic status are underrepresented in the overall population. The shortage of CS teachers is one of the significant barriers to why minoritized groups of students do not have equal access to learning CS. Various programmatic efforts have been implemented to address the gap, including the recruitment of undergraduate students who will earn bachelor’s degrees in computing. This approach has been considered innovative in building a new pipeline for producing highly qualified CS teachers with the ability to transform computing education and the CS teacher community rather than training in-service teachers certified in other disciplines to receive credentials to teach CS. Studies report that CS degree recipients opt for industry roles and exhibit disinterest in alternative career pathways, such as teaching because they perceive this profession as having lower salaries and unfavorable aspects associated with the job. However, we need a more prosperous and in-depth understanding of why CS degree holders consider industry jobs of greater importance rather than teaching, which would reduce the disparity in K-12 computing education. As a first attempt to better understand the perceptions of computer science undergraduate students at an Hispanic-Serving Institution (HSI), we collected qualitative data (i.e., student artifacts) in a course offered in the computer science department. Driven by social cognitive career and FIT-choice theory, our findings from the preliminary analysis indicate that CS undergraduate students at an HSI acknowledged the importance of K-12 CS teachers in their communities, but at the same time, they have more concerns about the underpayment and undervaluation of the job. They have shown a conflict between their perceptions of teaching CS and their own career aspirations as CS teachers. These preliminary findings draw attention to the importance of uncovering common career plans among CS undergraduate students.more » « less
-
Michael Lachney and Aman Yadav, Special issue (Ed.)This article offers Ancestral Computing for Sustainability (ACS) to dismantle the logics of settler colonialism that affect accessibility, identities, and epistemologies of computer science education (CSE). ACS centers Indigenous epistemologies in researching CSE across four public universities in the United States. This paper describes Ancestral Computing for Sustainability and explores reflections of two students engaging as researchers in ACS inquiry. Drawing on Indigenous methodologies and Participatory Action Research, they share their reflections as co-researchers in ACS through storywork. These critical reflections include their relationship to computing, observations of the interdependent work within ACS, ethics and sustainability, and their experiences within the focus groups. The article ends with recommendations for furthering ACS as a decolonial approach that centers Indigenous epistemologies in CSE. Recommendations for CSE education include Ancestral Knowledge Systems and adding sustainability as a topic within computing education pathways and building student-faculty relationships based on trust is recommended to foster students’ academic and personal growth within CSE education and research.more » « less
-
The Association of American Colleges and Universities identifies undergraduate research experiences as a high impact practice for increasing student success and retention in STEM majors. Most undergraduate research opportunities for community college engineering students involve partnerships with universities and typically take the form of paid summer experiences. Course-based Undergraduate Research Experiences (CUREs) offer an alternative model with potential for significant expansion of research opportunities for students. This approach weaves research into the courses students are already required to complete for their degrees. CUREs are an equitable approach for introducing students to research because they do not demand extracurricular financial and/or time commitments beyond what students must already commit to for their courses. This paper describes an adaptable model for implementing a CURE in an introductory engineering design and computing course that features applications of low-cost microcontrollers. Students work toward course learning outcomes focused on computer programming, engineering design processes, and effective teamwork in the context of multi-term research and development efforts to design, build, and test devices for other CUREs in science lab courses as well as for other applications at the college or with community partners. Students choose from a menu of projects each term, with a typical course offering involving four to six different projects running simultaneously. Each team identifies a focused design and development scope of work within the larger context of the project they are interested in. They give weekly progress reports and gather input from their customers. The work culminates in a prototype and final report to document their work for student teams who will carry it forward in future terms. We assessed the impact of the experience on students’ beliefs about science and engineering, STEM confidence, and career aspirations using a nationally normed survey for CUREs in STEM and report results from five terms of offering this course. We find statistically significant pre-post gains on two-thirds of the survey items relating to students’ understanding of the research process and confidence in their STEM abilities. The pre-post gains are generally comparable to those reported by others who used the same survey to assess the impact of a summer research experience for community college students. These findings indicate that the benefits of student participation in this CURE model are comparable to the benefits students see by participation in summer research programs.more » « less
An official website of the United States government

